204 research outputs found
Soft Gamma-ray Detector for the ASTRO-H Mission
ASTRO-H is the next generation JAXA X-ray satellite, intended to carry
instruments with broad energy coverage and exquisite energy resolution. The
Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature
wide energy band (40-600 keV) at a background level 10 times better than the
current instruments on orbit. SGD is complimentary to ASTRO-H's Hard X-ray
Imager covering the energy range of 5-80 keV. The SGD achieves low background
by combining a Compton camera scheme with a narrow field-of-view active shield
where Compton kinematics is utilized to reject backgrounds. The Compton camera
in the SGD is realized as a hybrid semiconductor detector system which consists
of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is
afforded by semiconductor sensors, and it results in good background rejection
capability due to better constraints on Compton kinematics. Utilization of
Compton kinematics also makes the SGD sensitive to the gamma-ray polarization,
opening up a new window to study properties of gamma-ray emission processes.
The ASTRO-H mission is approved by ISAS/JAXA to proceed to a detailed design
phase with an expected launch in 2014. In this paper, we present science
drivers and concept of the SGD instrument followed by detailed description of
the instrument and expected performance.Comment: 17 pages, 15 figures, Proceedings of the SPIE Astronomical
Instrumentation "Space Telescopes and Instrumentation 2010: Ultraviolet to
Gamma Ray
Particle Effects on the ISGRI Instrument On-Board the INTEGRAL Satellite
The INTEGRAL satellite was launched on October 17, 2002. All on-board
instruments are operating successfully. In this paper, we focus on radiation
effects on the Cadmium Telluride camera ISGRI. The spectral response of the
camera is affected by cosmic particles depositing huge amount of energy,
greater than the high threshold of the electronics. Our study raises the
contribution of cosmic ray protons. Solutions are proposed to limit the
degradation of spectral response of large pixel gamma cameras operating in
space
The ASTRO-H X-ray Observatory
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly
successful X-ray missions initiated by the Institute of Space and Astronautical
Science (ISAS). ASTRO-H will investigate the physics of the high-energy
universe via a suite of four instruments, covering a very wide energy range,
from 0.3 keV to 600 keV. These instruments include a high-resolution,
high-throughput spectrometer sensitive over 0.3-2 keV with high spectral
resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in
the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers
covering 5-80 keV, located in the focal plane of multilayer-coated, focusing
hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12
keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and
a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the
40-600 keV band. The simultaneous broad bandpass, coupled with high spectral
resolution, will enable the pursuit of a wide variety of important science
themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical
Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to
Gamma Ray
The Quiescent Intracluster Medium in the Core of the Perseus Cluster
Clusters of galaxies are the most massive gravitationally-bound objects in
the Universe and are still forming. They are thus important probes of
cosmological parameters and a host of astrophysical processes. Knowledge of the
dynamics of the pervasive hot gas, which dominates in mass over stars in a
cluster, is a crucial missing ingredient. It can enable new insights into
mechanical energy injection by the central supermassive black hole and the use
of hydrostatic equilibrium for the determination of cluster masses. X-rays from
the core of the Perseus cluster are emitted by the 50 million K diffuse hot
plasma filling its gravitational potential well. The Active Galactic Nucleus of
the central galaxy NGC1275 is pumping jetted energy into the surrounding
intracluster medium, creating buoyant bubbles filled with relativistic plasma.
These likely induce motions in the intracluster medium and heat the inner gas
preventing runaway radiative cooling; a process known as Active Galactic
Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus
cluster core, which reveal a remarkably quiescent atmosphere where the gas has
a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from
the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s
is found across the 60 kpc image of the cluster core. Turbulent pressure
support in the gas is 4% or less of the thermodynamic pressure, with large
scale shear at most doubling that estimate. We infer that total cluster masses
determined from hydrostatic equilibrium in the central regions need little
correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July
The TRILL project: increasing the technological readiness of Laue lenses
Hard X-/soft Gamma-ray astronomy (> 100 keV) is a crucial field for the study
of important astrophysical phenomena such as the 511 keV positron annihilation
line in the Galactic center region and its origin, gamma-ray bursts, soft
gamma-ray repeaters, nuclear lines from SN explosions and more. However,
several key questions in this field require sensitivity and angular resolution
that are hardly achievable with present technology. A new generation of
instruments suitable to focus hard X-/soft Gamma-rays is necessary to overcome
the technological limitations of current direct-viewing telescopes. One
solution is using Laue lenses based on Bragg's diffraction in a transmission
configuration. To date, this technology is in an advanced stage of development
and further efforts are being made in order to significantly increase its
technology readiness level (TRL). To this end, massive production of suitable
crystals is required, as well as an improvement of the capability of their
alignment. Such a technological improvement could be exploited in stratospheric
balloon experiments and, ultimately, in space missions with a telescope of
about 20 m focal length, capable of focusing over a broad energy pass-band. We
present the latest technological developments of the TRILL (Technological
Readiness Increase for Laue Lenses) project, supported by ASI, devoted to the
advancement of the technological readiness of Laue lenses. We show the method
we developed for preparing suitable bent Germanium and Silicon crystals and the
latest advancements in crystals alignment technology.Comment: arXiv admin note: text overlap with arXiv:2211.1688
Hitomi X-Ray Studies of Giant Radio Pulses from the Crab Pulsar
To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2300 keV band and the Kashima NICT radio telescope in the 1.41.7 GHz band with a net exposure of about 2 ks on 2016 March 25, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1000 and 100 GRPs were simultaneously observed at the main pulse and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main pulse or inter-pulse phase. All variations are within the 2 fluctuations of the X-ray fluxes at the pulse peaks, and the 3 upper limits of variations of main pulse or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2300 keV band. The values for main pulse or inter-pulse GRPs become 25% or 110%, respectively, when the phase width is restricted to the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.510 keV and 70300 keV bands are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of the main pulse and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) 10(exp 11) erg cm(exp 2), respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere. Although the number of photon-emitting particles should temporarily increase to account for the brightening of the radio emission, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a >0.02% brightening of the pulse-peak flux under such conditions
- …
