429 research outputs found

    On the origin of HE0107-5240, the most iron deficient star presently known

    Full text link
    We show that the "puzzling" chemical composition observed in the extremely metal poor star HE0107-5240 may be naturally explained by the concurrent pollution of at least two supernovae. In the simplest possible model a supernova of quite low mass (~15 Msun), underwent a "normal" explosion and ejected ~0.06 Msun of 56Ni while a second one was massive enough (~35 Msun) to experience a strong fall back that locked in a compact remnant all the carbon-oxygen core. In a more general scenario, the pristine gas clouds were polluted by one or more supernovae of relatively low mass (less than ~25 Msun). The successive explosion of a quite massive star experiencing an extended fall back would have largely raised the abundances of the light elements in its close neighborhood.Comment: 10 pages; 3 figures; accepted for publication in the The Astrophysical Journal Letter

    Role of glutathionylation in infection and inflammation

    Get PDF
    Glutathionylation, that is, the formation of mixed disulfides between protein cysteines and glutathione (GSH) cysteines, is a reversible post-translational modification catalyzed by dierent cellular oxidoreductases, by which the redox state of the cell modulates protein function. So far, most studies on the identification of glutathionylated proteins have focused on cellular proteins, including proteins involved in host response to infection, but there is a growing number of reports showing that microbial proteins also undergo glutathionylation, with modification of their characteristics and functions. In the present review, we highlight the signaling role of GSH through glutathionylation, particularly focusing on microbial (viral and bacterial) glutathionylated proteins (GSSPs) and host GSSPs involved in the immune/inflammatory response to infection; moreover, we discuss the biological role of the process in microbial infections and related host responses

    Spectral libraries and their uncertainties

    Get PDF
    Libraries of stellar spectra are fundamental tools in the study of stellar populations and in automatic determination of atmospheric parameters for large samples of observed stars. In the context of the present volume, here I give an overview of the current status of stellar spectral libraries from the perspective of stellar population modeling: what we have currently available, how good they are, and where we need further improvement

    On the Origin of the Early Solar System Radioactivities. Problems with the AGB and Massive Star Scenarios

    Get PDF
    Recent improvements in stellar models for intermediate-mass and massive stars are recalled, together with their expectations for the synthesis of radioactive nuclei of lifetime τ25\tau \lesssim 25 Myr, in order to re-examine the origins of now extinct radioactivities, which were alive in the solar nebula. The Galactic inheritance broadly explains most of them, especially if rr-process nuclei are produced by neutron star merging according to recent models. Instead, 26^{26}Al, 41^{41}Ca, 135^{135}Cs and possibly 60^{60}Fe require nucleosynthesis events close to the solar formation. We outline the persisting difficulties to account for these nuclei by Intermediate Mass Stars (2 \lesssim M/M78_\odot \lesssim 7 - 8). Models of their final stages now predict the ubiquitous formation of a 13^{13}C reservoir as a neutron capture source; hence, even in presence of 26^{26}Al production from Deep Mixing or Hot Bottom Burning, the ratio 26^{26}Al/107^{107}Pd remains incompatible with measured data, with a large excess in 107^{107}Pd. This is shown for two recent approaches to Deep Mixing. Even a late contamination by a Massive Star meets problems. In fact, inhomogeneous addition of Supernova debris predicts non-measured excesses on stable isotopes. Revisions invoking specific low-mass supernovae and/or the sequential contamination of the pre-solar molecular cloud might be affected by similar problems, although our conclusions here are weakened by our schematic approach to the addition of SN ejecta. The limited parameter space remaining to be explored for solving this puzzle is discussed.Comment: Accepted for publication on Ap

    The End of Amnesia: Measuring the Metallicities of Type Ia SN Progenitors with Manganese Lines in Supernova Remnants

    Full text link
    The Mn to Cr mass ratio in supernova ejecta has recently been proposed as a tracer of Type Ia SN progenitor metallicity. We review the advantages and problems of this observable quantity, and discuss them in the framework of the Tycho Supernova Remnant. The fluxes of the Mn and Cr Kalpha lines in the X-ray spectra of Tycho observed by the Suzaku satellite suggests a progenitor of supersolar metallicity.Comment: 4 pages, 1 figure, Proceedings of 'Probing Stellar Populations out to the Distant Universe'. September 15-19 2008, Cefalu, Sicily, Ital

    C/O white dwarfs of very low mass: 0.33-0.5 Mo

    Full text link
    The standard lower limit for the mass of white dwarfs (WDs) with a C/O core is roughly 0.5 Mo. In the present work we investigated the possibility to form C/O WDs with mass as low as 0.33 Mo. Both the pre-WD and the cooling evolution of such nonstandard models will be described.Comment: Submitted to the "Proceedings of the 16th European White Dwarf Workshop" (to be published JPCS). 7 pages including 13 figure

    Biohydrogen from microalgae: Production and applications

    Get PDF
    The need to safeguard our planet by reducing carbon dioxide emissions has led to a significant development of research in the field of alternative energy sources. Hydrogen has proved to be the most promising molecule, as a fuel, due to its low environmental impact. Even if various methods already exist for producing hydrogen, most of them are not sustainable. Thus, research focuses on the biological sector, studying microalgae, and other microorganisms’ ability to produce this precious molecule in a natural way. In this review, we provide a description of the biochemical and molecular processes for the production of biohydrogen and give a general overview of one of the most interesting technologies in which hydrogen finds application for electricity production: fuel cells

    TOPoS: II. On the bimodality of carbon abundance in CEMP stars. Implications on the early chemical evolution of galaxies

    Get PDF
    In the course of the TOPoS (Turn Off Primordial Stars) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. We here present our analysis of six CEMP stars. Calcium and carbon are the only elements that can be measured in all six stars. The range is -5.0<=[Ca/H]< -2.1 and 7.12<=A(C)<=8.65. For star SDSS J1742+2531 we were able to detect three FeI lines from which we deduced [Fe/H]=-4.80, from four CaII lines we derived [Ca/H]=-4.56, and from synthesis of the G-band we derived A(C)=7.26. For SDSS J1035+0641 we were not able to detect any iron lines, yet we could place a robust (3sigma) upper limit of [Fe/H]< -5.0 and measure the Ca abundance, with [Ca/H]=-5.0, and carbon, A(C)=6.90. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li)<1.8 for both stars. Our measured carbon abundances confirm the bimodal distribution of carbon in CEMP stars, identifying a high-carbon band and a low-carbon band. We propose an interpretation of this bimodality according to which the stars on the high-carbon band are the result of mass transfer from an AGB companion, while the stars on the low-carbon band are genuine fossil records of a gas cloud that has also been enriched by a faint supernova (SN) providing carbon and the lighter elements. (Abridged)Comment: to be published on A&
    corecore