534 research outputs found
Plasmonic and Photonic Designs for Light Trapping in Thin Film Solar Cells
Thin film solar cells are promising to realize cheap solar energy. Compared to conventional wafer cells, they can reduce the use of semiconductor material by 90%. The efficiency of thin film solar cells, however, is limited due to insufficient light absorption. Sufficient light absorption at the bandgap of semiconductor requires a light path more than 10x the thickness of the semiconductor. Advanced designs for light trapping are necessary for solar cells to absorb sufficient light within a limited volume of semiconductor. The goal is to convert the incident light into a trapped mode in the semiconductor layer.
In this dissertation, a critical review of currently used methods for light trapping in solar cells is presented. The disadvantage of each design is pointed out including insufficient enhancement, undesired optical loss and undesired loss in carrier transport. The focus of the dissertation is light trapping by plasmonic and photonic structures in thin film Si solar cells. The performance of light trapping by plasmonic structures is dependent on the efficiency of photon radiation from plasmonic structures. The theory of antenna radiation is used to study the radiation by plasmonic structures. In order to achieve efficient photon radiation at a plasmonic resonance, a proper distribution of surface charges is necessary.
The planar fishnet structure is proposed as a substitution for plasmonic particles. Large particles are required in order to resonate at the bandgap of semiconductor material. Hence, the resulting overall thickness of solar cells with large particles is large. Instead, the resonance of fishnet structure can be tuned without affecting the overall cell thickness. Numerical simulation shows that the enhancement of light absorption in the active layer is over 10x compared to the same cell without fishnet. Photons radiated from the resonating fishnet structure travel in multiple directions within the semiconductor layer. There is enhanced field localization due to interference. The short circuit current was enhanced by 13.29%.
Photonic structures such as nanodomes and gratings are studied. Compared to existing designs, photonic structures studied in this dissertation exhibited further improvements in light absorption and carrier transport. The nanodome geometry was combined with conductive charge collectors in order to perform simultaneous enhancement in optics and carrier transport. Despite the increased volume of semiconductor material, the collection length for carriers is less than the diffusion length for minority carriers. The nanodome geometry can be used in the back end and the front end of solar cells. A blazed grating structure made of transparent conductive oxide serves as the back passivation layer while enhancing light absorption. The surface area of the absorber is increased by only 15%, indicating a limited increase in surface recombination. The resulting short circuit current is enhanced by over 20%.
The designs presented in the dissertation have demonstrated enhancement in Si thin film solar cells. The enhancement is achieved without hurting carrier transport in solar cells. As a result, the enhancement in light absorption can efficiently convert to the enhancement in cell efficiency. The fabrication of the proposed designs in this dissertation involves expensive process such as electron beam lithography. Future work is focused on optical designs that are feasible for cheap fabrication process. The designs studied in this dissertation can serve as prototype designs for future work
DETC2005-84151 FINITE ELEMENT ANALYSIS FOR INTERIOR BOOMING NOISE REDUCTION IN A TRACTOR CABIN
ABSTRACT This paper presents a finite element approach to analyze the "boom" noise for a compact tractor cabin. The tractor cabin is initially designed to have a structure made up of steel beams and aluminum panels, as well as PMAA panels in windshield, backlight and windows. Cavity acoustic modes of the cab are evaluated and the acoustic resonant frequencies are identified. The study on the structural-borne noise from the cabin structural vibration generated by the engine of the vehicle is performed. A coupled-field finite element model, counting the interactions between the air fluid inside the cabin compartment and the cabin exterior structure, is presented for investigating the structural-borne noise in a low frequency range of 20 Hz to 80 Hz. This range has shown strong boom effects. The interior noise level at driver's right ear position is investigated. The peak noise levels at the position are determined. The effects of additional stiffeners and damping layers on the boom noise are also investigated
Top-emitting white organic light-emitting devices with down-conversion phosphors: Theory and experiment
White top-emitting organic light-emitting devices (TEOLEDs) with down-conversion phosphors are investigated from theory and experiment. The theoretical simulation was described by combining the microcavity model with the down-conversion model. A White TEOLED by the combination of a blue TEOLED with organic down-conversion phosphor 3-(4-(diphenylamino)phenyl)-1-pheny1prop-2-en- 1-one was fabricated to validate the simulated results. It is shown that this approach permits the generation of white light in TEOLEDs. The efficiency of the white TEOLED is twice over the corresponding blue TEOLED. The feasible methods to improve the performance of such white TEOLEDs are discussed. © 2007 Optical Society of America
Clinical efficacy of the combined use of levofloxacin and different courses of isoniazid and rifampicin in the treatment of mild spinal tuberculosis
Purpose: To investigate the clinical effectiveness of the combined use of levofloxacin and different courses of isoniazid and rifampicin in the treatment of mild spinal tuberculosis (TB).
Methods: The clinic data of 100 patients with light spinal TB were retrospectively reviewed. A double-blind technique was used to divide the patients into 6-month treatment group (M6 group, n = 32), 12-month treatment group (M12 group, n = 34) and 18-month treatment group (M18 group, n = 34). All patients were given isoniazid and rifampicin, in combination with levofloxacin. The effects of the different treatment courses on mild spinal TB were determined.
Results: There were significantly higher post-treatment levels of inflammatory factors in M6 group than in M12 and M18 groups (p < 0.001). Moreover, there were significantly higher Visual Analogue Scale (VAS) score and erythrocyte sedimentation rate (ESR), and larger focus size in M6 group than in M12 and M18 groups (p < 0.05). However, after treatment, M18 group had significantly higher total incidence of adverse reactions than M6 and M12 groups (p < 0.05).
Conclusion: Compared with the short-course treatment, long-course treatment with isoniazid and rifampicin in combination with levofloxacin is more effective in reducing the levels of inflammatory factors and decreasing focus size in patients with mild spinal TB. However, patients given the 18-month treatment tend to develop more adverse reactions. Therefore, 12-month treatment with the combined therapy is a better therapeutic option
Anti-sulfatide antibody-related GuillainâBarrĂ© syndrome presenting with overlapping syndromes or severe pyramidal tract damage: a case report and literature review
IntroductionAnti-sulfatide antibodies are key biomarkers for the diagnosis of GuillainâBarrĂ© syndrome (GBS). However, case reports on anti-sulfatide antibody-related GBS are rare, particularly for atypical cases.Case description, case 1A 63âyears-old man presented with limb numbness and diplopia persisting for 2âweeks, with marked deterioration over the previous 4âdays. His medical history included cerebral infarction, diabetes, and coronary atherosclerotic cardiomyopathy. Physical examination revealed limited movement in his left eye and diminished sensation in his extremities. Initial treatments included antiplatelet agents, cholesterol-lowering drugs, hypoglycemic agents, and medications to improve cerebral circulation. Despite this, his condition worsened, resulting in bilateral facial paralysis, delirium, ataxia, and decreased lower limb muscle strength. Treatment with intravenous high-dose immunoglobulin and dexamethasone resulted in gradual improvement. A 1âmonth follow-up revealed significant neurological sequelae.Case description, case 2A 53âyears-old woman was admitted for adenomyosis and subsequently experienced sudden limb weakness, numbness, and pain that progressively worsened, presenting with diminished sensation and muscle strength in all limbs. High-dose intravenous immunoglobulin, vitamin B1, and mecobalamin were administered. At the 1âmonth follow-up, the patient still experienced limb numbness and difficulty walking. In both patients, albuminocytologic dissociation was found on cerebrospinal fluid (CSF) analysis, positive anti-sulfatide antibodies were detected in the CSF, and electromyography indicated peripheral nerve damage.ConclusionAnti-sulfatide antibody-related GBS can present with MillerâFisher syndrome, brainstem encephalitis, or a combination of the two, along with severe pyramidal tract damage and residual neurological sequelae, thereby expanding the clinical profile of this GBS subtype. Anti-sulfatide antibodies are a crucial diagnostic biomarker. Further exploration of the pathophysiological mechanisms is necessary for precise treatment and improved prognosis
Numerical study of premixed PODE3-4/CH4 flames at engine-relevant conditions
Polyoxymethylene dimethyl ether (PODEn, n â„ 1) is a promising alternative fuel to diesel with higher reactivity and low soot formation tendency. In this study, PODE3-4 is used as a pilot ignition fuel for methane (CH4) and the combustion characteristics of PODE3-4/CH4 mixtures are investigated numerically using an updated PODE3-4 mechanism. The ignition delay time (IDT) and laminar burning velocity (LBV) of PODE3-4/CH4 blends were calculated at high temperature and high pressure relevant to engine conditions. It is discovered that addition of a small amount of PODE3-4 has a dramatic promotive effect on IDT and LBV of CH4, whereas such a promoting effect decays at higher PODE3-4 addition. Kinetic analysis was performed to gain more insight into the reaction process of PODE3-4/CH4 mixtures at different conditions. In general, the promoting effect originates from the high reactivity of PODE3-4 at low temperatures and it is further confirmed in simulations using a perfectly stirred reactor (PSR) model. The addition of PODE3-4 significantly extends the extinction limit of CH4 from a residence time of ~0.5 ms to that of ~0.08 ms, indicating that the flame stability is enhanced as well by PODE3-4 addition. It is also found that NO formation is reduced in lean or rich flames; moreover, NO formation is inhibited by too short a residence time
Assessment of tobacco control advocacy behavioural capacity among students at schools of public health in China
OBJECTIVES. To evaluate student tobacco control advocacy behavioural capacity using longitudinal trace data. METHODS. A tobacco control advocacy curriculum was developed and implemented at schools of public health (SPH) or departments of public health in seven universities in China. Participants comprised undergraduate students studying the public health curriculum in these 13 Universities. A standardised assessment tool was used to evaluate their tobacco control advocacy behavioural capacity. Repeated measures analysis of variance, paired t tests and paired ?2 tests were used to determine differences between dependent variables across time. Multivariate analysis of variance (MANOVA) and multivariate logistic regression were used to assess treatment effects between intervention and control sites. RESULTS. Respective totals of 426 students in the intervention group and 338 in the control group were available for the evaluation. Approximately 90% of respondents were aged 21 years or older and 56% were women. Findings show that the capacity building program significantly improved public health student advocacy behavioural capacity, including advocacy attitude, interest, motivation and anti-secondhand smoke behaviours. The curriculum did not impact student smoking behaviour. CONCLUSIONS. This study provides sufficient evidence to support the implementation of tobacco control advocacy training at Chinese schools of public health.International Union Against Tuberculosis and Lung Disease(U-China-1-15
Linear active disturbance rejection control for large onshore wind turbines in full wind speed range
To achieve real-time estimation and compensation of total system disturbances and improve the control performance of wind turbines under complex turbulent wind conditions, three one-order LADRCs were used to reconstruct the wind turbine core control system. A dynamic variable limit LADRC was designed for torque control, a minimum limit LADRC was applied in pitch control, and a LADRC power controller was designed for decoupling torque and pitch control. The stability of the LADRCs was proven using the Lyapunov method. According to the transfer function of wind turbines and empirical equations, the parameters of each LADRC were tuned. Based on the hardware-in-loop simulation (HILS) test platform, the control algorithm of look-up table, PID, RISC, and LADRC were constructed by PLC language. Through comparative studies, it was verified that the algorithm proposed in this paper can reduce generator rotor speed and power fluctuations by about 13.6% and 1.7% at least, and it can also reduce the blade root load force
- âŠ