87 research outputs found

    Cerebrospinal fluid NCAM-1 concentration is associated with neurodevelopmental outcome in post-hemorrhagic hydrocephalus of prematurity

    Get PDF
    OBJECTIVE: Efforts directed at mitigating neurological disability in preterm infants with intraventricular hemorrhage (IVH) and post hemorrhagic hydrocephalus (PHH) are limited by a dearth of quantifiable metrics capable of predicting long-term outcome. The objective of this study was to examine the relationships between candidate cerebrospinal fluid (CSF) biomarkers of PHH and neurodevelopmental outcomes in infants undergoing neurosurgical treatment for PHH. STUDY DESIGN: Preterm infants with PHH were enrolled across the Hydrocephalus Clinical Research Network. CSF samples were collected at the time of temporizing neurosurgical procedure (n = 98). Amyloid precursor protein (APP), L1CAM, NCAM-1, and total protein (TP) were compared in PHH versus control CSF. Fifty-four of these PHH subjects underwent Bayley Scales of Infant Development-III (Bayley-III) testing at 15-30 months corrected age. Controlling for false discovery rate (FDR) and adjusting for post-menstrual age (PMA) and IVH grade, Pearson\u27s partial correlation coefficients were used to examine relationships between CSF proteins and Bayley-III composite cognitive, language, and motor scores. RESULTS: CSF APP, L1CAM, NCAM-1, and TP were elevated in PHH over control at temporizing surgery. CSF NCAM-1 was associated with Bayley-III motor score (R = -0.422, p = 0.007, FDR Q = 0.089), with modest relationships noted with cognition (R = -0.335, p = 0.030, FDR Q = 0.182) and language (R = -0.314, p = 0.048, FDR Q = 0.194) scores. No relationships were observed between CSF APP, L1CAM, or TP and Bayley-III scores. FOHR at the time of temporization did not correlate with Bayley-III scores, though trends were observed with Bayley-III motor (p = 0.0647 and R = -0.2912) and cognitive scores (p = 0.0506 and R = -0.2966). CONCLUSION: CSF NCAM-1 was associated with neurodevelopment in this multi-institutional PHH cohort. This is the first report relating a specific CSF protein, NCAM-1, to neurodevelopment in PHH. Future work will further investigate a possible role for NCAM-1 as a biomarker of PHH-associated neurological disability

    Neurosurgical management of non-spastic movement disorders

    Get PDF
    BACKGROUND: Non-spastic movement disorders in children are common, although true epidemiologic data is difficult to ascertain. Children are more likely than adults to have hyperkinetic movement disorders defined as tics, dystonia, chorea/athetosis, or tremor. These conditions manifest from acquired or heredodegenerative etiologies and often severely limit function despite medical and surgical management paradigms. Neurosurgical management for these conditions is highlighted. METHODS: We performed a focused review of the literature by searching PubMed on 16 May 2023 using key terms related to our review. No temporal filter was applied, but only English articles were considered. We searched for the terms (( Pallidotomy [Mesh]) OR Rhizotomy [Mesh]) OR Deep Brain Stimulation [Mesh], dystonia, children, adolescent, pediatric, globus pallidus, in combination. All articles were reviewed for inclusion in the final reference list. RESULTS: Our search terms returned 37 articles from 2004 to 2023. Articles covering deep brain stimulation were the most common (n = 34) followed by pallidotomy (n = 3); there were no articles on rhizotomy. DISCUSSION: Non-spastic movement disorders are common in children and difficult to treat. Most of these patients are referred to neurosurgery for the management of dystonia, with modern neurosurgical management including pallidotomy, rhizotomy, and deep brain stimulation. Historically, pallidotomy has been effective and may still be preferred in subpopulations presenting either in status dystonicus or with high risk for hardware complications. Superiority of DBS over pallidotomy for secondary dystonia has not been determined. Rhizotomy is an underutilized surgical tool and more study characterizing efficacy and risk profile is indicated

    Transcriptional analyses of adult and pediatric adamantinomatous craniopharyngioma reveals similar expression signatures regarding potential therapeutic targets

    Get PDF
    Adamantinomatous craniopharyngioma (ACP) is a biologically benign but clinically aggressive lesion that has a significant impact on quality of life. The incidence of the disease has a bimodal distribution, with peaks occurring in children and older adults. Our group previously published the results of a transcriptome analysis of pediatric ACPs that identified several genes that were consistently overexpressed relative to other pediatric brain tumors and normal tissue. We now present the results of a transcriptome analysis comparing pediatric to adult ACP to identify biological differences between these groups that may provide novel therapeutic insights or support the assertion that potential therapies identified through the study of pediatric ACP may also have a role in adult ACP. Using our compiled transcriptome dataset of 27 pediatric and 9 adult ACPs, obtained through the Advancing Treatment for Pediatric Craniopharyngioma Consortium, we interrogated potential age-related transcriptional differences using several rigorous mathematical analyses. These included: canonical differential expression analysis; divisive, agglomerative, and probabilistic based hierarchical clustering; information theory based characterizations; and the deep learning approach, HD Spot. Our work indicates that there is no therapeutically relevant difference in ACP gene expression based on age. As such, potential therapeutic targets identified in pediatric ACP are also likely to have relvance for adult patients

    A comparison of resting state functional magnetic resonance imaging to invasive electrocortical stimulation for sensorimotor mapping in pediatric patients

    Get PDF
    Localizing neurologic function within the brain remains a significant challenge in clinical neurosurgery. Invasive mapping with direct electrocortical stimulation currently is the clinical gold standard but is impractical in young or cognitively delayed patients who are unable to reliably perform tasks. Resting state functional magnetic resonance imaging non-invasively identifies resting state networks without the need for task performance, hence, is well suited to pediatric patients. We compared sensorimotor network localization by resting state fMRI to cortical stimulation sensory and motor mapping in 16 pediatric patients aged 3.1 to 18.6 years. All had medically refractory epilepsy that required invasive electrographic monitoring and stimulation mapping. The resting state fMRI data were analyzed using a previously trained machine learning classifier that has previously been evaluated in adults. We report comparable functional localization by resting state fMRI compared to stimulation mapping. These results provide strong evidence for the utility of resting state functional imaging in the localization of sensorimotor cortex across a wide range of pediatric patients

    On the role of the corpus callosum in interhemispheric functional connectivity in humans

    Get PDF
    Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity

    Semi-automated segmentation of the lateral periventricular regions using diffusion magnetic resonance imaging

    Get PDF
    The lateral ventricular perimeter (LVP) of the brain is a critical region because in addition to housing neural stem cells required for brain development, it facilitates cerebrospinal fluid (CSF) bulk flow and functions as a blood-CSF barrier to protect periventricular white matter (PVWM) and other adjacent regions from injurious toxins. LVP injury is common, particularly among preterm infants who sustain intraventricular hemorrhage or post hemorrhagic hydrocephalus and has been associated with poor neurological outcomes. Assessment of the LVP with diffusion MRI has been challenging, primarily due to issues with partial volume artifacts since the LVP region is in close proximity to CSF and other structures of varying signal intensities that may be inadvertently included in LVP segmentation. This research method presents:•A novel MATLAB-based method to segment a homogenous LVP layer using high spatial resolution parameters (voxel size 1.2 × 1.2 × 1.2 m

    MR diffusion changes in the perimeter of the lateral ventricles demonstrate periventricular injury in post-hemorrhagic hydrocephalus of prematurity

    Get PDF
    OBJECTIVES: Injury to the preterm lateral ventricular perimeter (LVP), which contains the neural stem cells responsible for brain development, may contribute to the neurological sequelae of intraventricular hemorrhage (IVH) and post-hemorrhagic hydrocephalus of prematurity (PHH). This study utilizes diffusion MRI (dMRI) to characterize the microstructural effects of IVH/PHH on the LVP and segmented frontal-occipital horn perimeters (FOHP). STUDY DESIGN: Prospective study of 56 full-term infants, 72 very preterm infants without brain injury (VPT), 17 VPT infants with high-grade IVH without hydrocephalus (HG-IVH), and 13 VPT infants with PHH who underwent dMRI at term equivalent. LVP and FOHP dMRI measures and ventricular size-dMRI correlations were assessed. RESULTS: In the LVP, PHH had consistently lower FA and higher MD and RD than FT and VPT (p\u3c.050). However, while PHH FA was lower, and PHH RD was higher than their respective HG-IVH measures (p\u3c.050), the MD and AD values did not differ. In the FOHP, PHH infants had lower FA and higher RD than FT and VPT (p\u3c.010), and a lower FA than the HG-IVH group (p\u3c.001). While the magnitude of AD in both the LVP and FOHP were consistently less in the PHH group on pairwise comparisons to the other groups, the differences were not significant (p\u3e.050). Ventricular size correlated negatively with FA, and positively with MD and RD (p\u3c.001) in both the LVP and FOHP. In the PHH group, FA was lower in the FOHP than in the LVP, which was contrary to the observed findings in the healthy infants (p\u3c.001). Nevertheless, there were no regional differences in AD, MD, and RD in the PHH group. CONCLUSION: HG-IVH and PHH results in aberrant LVP/FOHP microstructure, with prominent abnormalities among the PHH group, most notably in the FOHP. Larger ventricular size was associated with greater magnitude of abnormality. LVP/FOHP dMRI measures may provide valuable biomarkers for future studies directed at improving the management and neurological outcomes of IVH/PHH
    • …
    corecore