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Abstract

Hydrocephalus is a neurological disorder with an incidence of 80-125 per 100,000 live births in the United States.
The molecular pathogenesis of this multidimensional disorder is complex and has both genetic and environmental
influences. This review aims to discuss the genetic and molecular alterations described in human hydrocephalus, from
well-characterized, heritable forms of hydrocephalus (e.g., X-linked hydrocephalus from L1CAM variants) to those
affecting cilia motility and other complex pathologies such as neural tube defects and Dandy-Walker syndrome.
Ventricular zone disruption is one key pattern among congenital and acquired forms of hydrocephalus, with
abnormalities in cadherins, which mediate neuroepithelium/ependymal cell junctions and contribute to the
pathogenesis and severity of the disease. Given the relationship between hydrocephalus pathogenesis and
neurodevelopment, future research should elucidate the genetic and molecular mechanisms that regulate ventricular
zone integrity and stem cell biology.
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Full Text

Hydrocephalus is the most common disease treated by pediatric neurosurgeons[1] with an incidence of 0.3-0.7 per
1,000 live births in the US.[2] Current treatments are largely limited to cerebrospinal fluid (CSF) diversion including
CSF shunts or endoscopic third ventriculostomy with or without choroid plexus cauterization.[3],[4] While nonsurgical
treatments have long been sought, the pathophysiology of this disorder is complex, involving myriad genes and
environmental factors.[1]

This review focuses on the genetics and molecular pathogenesis of human hydrocephalus. We begin by describing the
ventricular system and neuroepithelium/ependyma in normal development before reviewing the genetics and
molecular biology associated with hydrocephalus. We then describe in detail ventricular/subventricular zone (VZ/SVZ)
disruption and dysregulation of cell-cell junctions as one critically important common molecular trigger in the



pathogenesis of hydrocephalus.
The ventricular system, CSF dynamics, and neuroepithelium/ependyma

According to the bulk-flow hypothesis, CSF moves from the two lateral ventricles to the third ventricle through the
foramina of Monro, and from there to the fourth ventricle through the aqueduct of Sylvius. CSF exits the fourth
ventricle to the subarachnoid space through the foramina of Luschka and Magendie, after which it is reabsorbed into
the bloodstream.[5],[6],[7] Moreover, while beyond the scope of this review, it is now appreciated that CSF
movement is considerably more complex, with a dynamic exchange flow between blood, interstitial fluid, and CSF
occurring throughout the entire brain.[7] The glymphatic system, formed by perivascular channels and astrocytes,
eliminates soluble protein and metabolites, and distributes different molecules such as glucose or amino acids.[8],[9]
CSF flows from the subarachnoid space, to the perivascular spaces in the dura, and from there to the brain
parenchyma through Aquaporin-4 water channels, mixing with the interstitial fluid. Parenchymal interstitial fluid flows
through perivenous spaces and is collected in the meningeal and cervical lymph nodes.[8],[9],[10],[11],[12]

At the interface between the brain parenchyma and the ventricles, the VZ develops as a neuroepithelium, maturing to
a single-cell, ciliated ependymal layer.[13] During development, neurogenesis in the neuroepithelium involves radial
glial cells.[14],[15] A subpopulation of radial glial cells matures into nonproliferative ependymal cells, while some
radial glia cells are retained as stem cells, constituting a neurogenic niche in the SVZ.[13],[16],[17] The VZ has
several critical functions, serving as a barrier with polarized cells that regulate CSF composition, mediating CSF flow
via motile cilia, and secreting signals involved in the development and physiology of the brain.[13]

Neuroepithelial cells are joined by tight junctions at their apical surface, and while VZ ependyma loses tight junctions
during development, they continue to express adherens junctions on their lateral surfaces.[14],[15] Adherens
meetings are primarily composed of N-cadherins, transmembrane proteins that interact with catenin proteins and the
actin cytoskeleton, as well as other proteins and transcription factors.[18] N-cadherins are also involved in the
regulation of catenin to modulate signal transduction and developmental patterning.[18] Ependymal cells elaborate
cilia, organelles present on the surface of the cells that beat in rhythmic waves. These cilia project into the ventricles,
contributing to the ependymal planar polarity. Ciliary beating also contributes to CSF flow, especially in the narrowest
parts of the ventricular system, that is, the aqueduct,[13] although myriad other mechanisms, such as pulsatility and
pressure gradients, influence CSF flow.[19]

Hydrocephalus

Hydrocephalus is a neurologic condition resulting from an imbalance in CSF production and absorption, typically
producing ventricular enlargement and increased intracranial pressure.[1],[20],[21] Traditionally, hydrocephalus has
been classified as communicating or noncommunicating,[22] with communicating etiologies presumably resulting
from the reduction of the CSF transport or occult obstruction at the level of the subarachnoid space.[23]
Noncommunicating etiologies result from an obstruction in the ventricular system, frequently at the level of the
aqueduct.[23] It is now recognized that hydrocephalus is more complex and may have multiple points of potential
pathology or obstruction,[21] with impairment of CSF absorption occurring anywhere in the cranial cavity.
Hydrocephalus may also be described broadly as congenital (developmental) or acquired.[1] Acquired hydrocephalus
may result from intracranial hemorrhage (e.g. subarachnoid or intraventricular hemorrhage (IVH)) or other lesions
developing after birth, while developmental hydrocephalus may be genetic or syndromic in origin or observed with
anomalies, the pathogenesis of which is not yet understood.[1] In North America, IVH is a common cause of severe
neurological injury in very preterm infants, and resultant post-hemorrhagic hydrocephalus (PHH) represents the most
common cause of pediatric hydrocephalus.[24],[25]

Genetics of congenital/developmental hydrocephalus

Congenital hydrocephalus includes (1) X-linked hydrocephalus with congenital aqueduct stenosis (AS), (2) neural
tube defects (spina bifida), (3) Dandy—-Walker syndrome, (4) holoprosencephaly, (5) primary ciliary dyskinesia and
other ciliopathies, and (6) nonsyndromic autosomal recessive hydrocephalus. Hydrocephalus has been associated
with other less common syndromes such as Fried-type syndrome; RAS-opathies; and vertebral, anal, cardiac,



tracheoesophageal, renal, and limb anomalies plus hydrocephalus (VACTERL-H).[1],[26] The most frequent gene
mutations involved in these syndromes/pathologies are shown in [Table 1].{Table 1}

X-linked hydrocephalus with aqueduct stenosis (XLH)

XLH is associated with a gene mutation in the neural cell adhesion molecule L1-CAM located on chromosome X.[1],
[26] It is the most common genetic form of hydrocephalus (1/30,000 births).[20],[27] L1-CAM is a member of the
immunoglobulin-like CAM family located on chromosome Xq28.[27],[42] L1-CAM is a glycoprotein that mediates cell-
cell adhesion, playing an important role in neural adhesion, migration, growth, and morphology.[26],[27] In 254
unrelated families, 211 mutations in the L1-CAM have been found, affecting different sites,[26] with correlations
between the mutation class and the severity of the ventricular dilation: (1) Class I mutations are present in the
cytoplasmic domain of the protein, (2) Class II are in the extracellular domain, (3) Class III provoke a premature stop
codon in the extracellular domain and loss of the protein function, and (4) mutations in the noncoding regions.[26]

L1-CAM mutations have long been linked to Corpus callosum hypoplasia, retardation, adducted thumbs, spastic
paraplegia, and hydrocephalus (CRASH) syndrome.[43] Ventriculomegaly is present in 100% of the cases, although
its severity can vary.[26],[27] XLH is also commonly associated with AS, fused thalami, and cerebellar lesions.[26],
[27] Adle-Biassette et al.[27] reported that 89% of patients with XLH exhibited AS, probably from severe
ventriculomegaly and high-pressure causing deformation. However, it has also been suggested that impairment of the
cell L1-CAM junctions is related to maldevelopment of midline structures[26] [Figure 1].{Figure 1}

Fried-type syndrome is an X-linked disorder caused by mutations in the AP1S2 gene.[38] The clinical symptoms
include intellectual disability, basal ganglia iron deposition, and hydrocephalus. AS and/or retrocerebellar or fourth
ventricular cysts have been detected in some hydrocephalic cases.[20]

Neural tube defects

Neural tube defects (NTDs) occur due to failure of closure of the neural tube during embryological development.
Myelomeningocele (spina bifida aperta (SBA)), which results from impaired closure of the caudal neuropore, is the
most frequent NTD and occurs in 1-2 cases per 2700 births.[26] In SBA, the meninges, dorsal spinal arch, and skin
do not develop properly; thus, the neural placode is exposed.[46] Hydrocephalus is present in almost 80% of these
cases and may be related to genetic variations that cause the loss of the ependymal cell polarity and ciliary
beating[26] or genes related to neural tube development.[46] However, there is no single genetic locus mutation; its
origin is likely a combination of multiple genes and environmental factors. What is well established is that intake of
folate during pregnancy decreases the incidence of the disease. It has been shown that genetic variants of single
genes encoding folate-homocysteine metabolism or gene-related interactions between different folate pathways are
risk factors.[46],[47],[48],[49] Notably, in utero closure of SB reduces both the post-natal incidence of
hydrocephalus and the need for shunting while also positively impacting Chiari II malformation and neurological
outcomes.[50],[51] These improvements further underscore the complexity and multifactorial nature of the disease.

Dandy-Walker malformation

Dandy-Walker malformation (DWM) is a common cerebral malformation (1/35,000 births) characterized by
hypoplasia and rotation of the cerebellar vermis; enlargement of the fourth ventricle and posterior fossa; and
rostrally shifted position of the lateral sinus, tentorium, and torcula herophili.[26],[52] Hydrocephalus is present in
80% of DWM cases, along with corpus callosum dysgenesis, schizencephaly, and glial heterotopia.[53] DWM is
associated with at least 18 types of chromosomal abnormalities such as trisomy 9, but it has also been associated
with exposure to different viruses, alcohol, or diabetes during brain development.[26],[53] Mutations in the genes
POMT1, POMT2, POMGNT1, FKTN, FKRP, LARGE, ISPD have been associated with the disease.[20],[30] Furthermore,
DWM may also be linked to other genetic syndromes such as, ectopic brain, and NTD.[53]

Holoprosencephaly (HPE)

HPE is a brain malformation caused by neural differentiation abnormalities that lead to failure of separation of the left



and right cerebral hemispheres before neural tube closure.[54] HPE incidence is 1/10,000 births. It may be
associated with hydrocephalus, DWM, and craniofacial abnormalities,[54] with three types based on the grade of
separation: alobar, semi lobar, and lobar HPE.[26] Like other neurodevelopmental anomalies, the pathogenesis of HPE
may have genetic and environmental influences or chromosomal abnormalities, such as trisomy 13, 18, or triploidy
(25%-50%). The other 50% of the cases may be related to glucose levels in mothers with diabetes, mutation in 7-
dehydrocholesterol reductase, and at least 16 other genes, including SHH, ZIC2, SIX3, and TGIF.[26]

Primary ciliary dyskinesia and other ciliopathies

With a prevalence of 1/15-30,000 births,[35] primary ciliary dyskinesia originates from a defect in ciliary and
flagellar motility or orientation that causes cilia dysfunction. Motor cilia are composed of an axoneme with 9 + 2
microtubules and a basal body to anchor the axoneme to the cell membrane. Another motile cilium is only present
during fetal neurodevelopment, presenting 9 + 0 microtubular structure, and functioning as an activator of a
signaling cascade that establishes left-right sidedness and body laterality.[35]

Motility is dependent on dynein proteins.[35] Primary ciliary dyskinesia in motor cilia is caused primarily by mutations
in genes that create immotile monocilia, that is, NEK10 or GAS2L2 genes encoding Hydin or polycystin-1 proteins,
[55],[56] although more than 50 genes have been identified.[35] Hydin regulates dynein arm activity in the central
pair of microtubules of the 9 + 2 axoneme in motile cilia;[57] thus, the mutation in this gene can impair cilia motility.
[58] MCIDAS mutations have been shown to strongly correlate with hydrocephalus.[36]

In primary ciliary dyskinesia, hydrocephalus is usually present with other pathologies, such as situs inversus
congenital heart disease, asplenia, or polysplenia.[55] It is thought that hydrocephalus appears as a consequence of
impaired ependyma cilia beating in narrow CSF passages, provoking AS.[36] As ependyma and choroid plexus are
involved in CSF production, changes in the CSF microenvironment secondary to beating loss may affect CSF
production, also contributing to hydrocephalus.[36]

Nonsyndromic autosomal recessive hydrocephalus: Beyond X-linked hydrocephalus

Nonsyndromic congenital hydrocephalus comprises 2%-11% of congenital hydrocephalus cases.[37] Distinct from
XLH, nonsyndromic congenital hydrocephalus includes the autosomal recessive variations of the CCDC88C or MPDZ
genes.[1] CCDC88C encodes the actin-binding protein DAPLE involved in cell migration. Three domains have been
described in DAPLE mutations, generating an absence of the entire protein (families I and III) or an absence of the
binding domain (family II).[37] Autosomal recessive hydrocephalus typically is characterized by ventricular dilatation
with an interhemispheric cyst, small vermis, and enlarged posterior fossa.[37]

Hydrocephalus associated with other less common syndromes

Hydrocephalus associated with intracranial arachnoid cysts, indicative of impaired CSF absorption within the
meninges,[59] has been related with mutations in the CC2D2A gene in Joubert and Meckel syndromes and with
deletion 22q13.3 Phelan-McDermid syndrome.[20] RAS-opathies, which include Noonan, cardio-facio-cutaneous, and
Costello syndromes,[20] originate from mutations in the RAS pathways (e.g., NF1, KRAS, BRAF, and PTPN11).[1],
[39] Hydrocephalus is present in these pathologies and may be caused directly by the genetic abnormality or by
downstream effects on the brain itself. Similar to RAS-opathies, hydrocephalus may be observed in megalencephaly
syndromes and may have multiple causes, often related to mutations in genes of the PI3K-AKT pathway.[40]
Hydrocephalus is also present in craniosynostosis syndromes where mutations in fibroblast growth factor receptor
genes have been identified. Alterations in the skull or skull base configuration may create an obstruction of CSF flow
or reduced absorption from venous hypertension.[30] VACTERL-H is a syndrome related to FANCB gene mutations
and Fanconi anemia or excess chromosome breakage.[20]

Molecular biology of hydrocephalus: Cell junctions and ventricular zone disruption

The neuroepithelium lines the ventricular walls during brain development and generates ependyma, which covers the
mature periventricular areas.[13] As described above, neuroepithelial/ependymal cells are joined by adherens



junctions formed by N-cadherin.[13] It has been shown that abnormalities in the cell junctions during ependymal
development can trigger or affect the evolution of hydrocephalus.[13],[23],[60],[61],[62],[63]

Disruption of the VZ/SVZ in hydrocephalus is a common event that involves the disassembling, disorganization, or
loss of the VZ cells.[60] The VZ/SVZ disruption follows a temporal and spatial program: progression proceeds from
caudal to rostral regions, and during neurodevelopment, impairment begins in early fetal stages when the tight
junctions disappear.[60] In human fetuses with SB, VZ disruption has been observed in the pallium at 21-22 GW,
with the disruption extending throughout the lateral ventricles in fetuses by 40 weeks.[64] Interestingly, the
disruption does not seem to correlate with ventricular volume but with the stage of neurodevelopment.[65]

Additionally, VZ/SVZ disruption seems to follow a common pattern in different hydrocephalic etiologies.
Neuroepithelium/ependymal loss has been detected in cases with hydrocephalus associated with SB[61],[62],[64]
and communicating hydrocephalus,[66] as well as IVH,[65] demonstrating that disruption is not only present in
congenital hydrocephalus but also in acquired hydrocephalus, such as PHH.[65]

The alterations in cell junctions appear to contribute to the developmental and physiological abnormalities of VZ
associated with hydrocephalus,[13] such as the alterations in LICAM and Aquaporin-4 levels seen in human fetal-
onset hydrocephalus [Figure 1].[44],[45] These patients exhibited abnormal cellular location of N-cadherin and
connexin 43 as both proteins were detected in the cytoplasm of the cells instead of the cell membrane.[61],[62] This
hypothesis has been tested in chick embryos where the immunologic blockage of N-cadherin resulted in the loss of
ependyma and formation of rosettes,[67] and it has been observed in several experimental in vivo and in vitro
models.[60],[67],[68],[69],[701,[711,[72],[73]

In humans, VZ disruption is associated with anomalous ependymal rosettes or heterotopia,[74] abnormalities in
neurogenesis that cause SVZ stem cell loss and disruption[60] and AS.[13] Large rosettes have been detected in the
areas where VZ disruption is present.[62] These rosettes are characterized by a group of cells organized in a “wheel”
shape that lose their polarity and cell junctions.[62] Subependymal rosettes near the VZ disruption site have been
detected expressing GFAP and without N-cadherin.[64] Heterotopia have been observed with large clusters of BIII
tubulin-positive cells near the SVZ.[64] Abnormalities in neurogenesis can be due to an impairment of migration of
neuroblasts caused by N-cadherin defects, displacing neural stem cells (NSC) and neuroblasts.[66] Human fetuses
with communicating hydrocephalus exhibit SVZ NSC abnormalities resulting from the loss of the germinal ependyma
layer, disorganization of the SVZ, and abnormal migration of the neuroblasts.[66] In human fetuses with IVH, SVZ
alterations also occur, including areas with NSC and ependyma loss and translocation of cells into the lateral
ventricles[65] [Figure 1]. Finally, AS can occur from the loss of neuroepithelium/ependyma[60]; when complete
obliteration takes place, honcommunicating hydrocephalus develops. The subcommissural organ-Reissner's fiber
complex (SCO-RF) may play a role in AS.[22],[75] The SCO creates a large mass of negatively charged, sialylated
glycoproteins, the RF, which remains CSF-soluble in normal conditions. In hydrocephalus, the SCO-RF is absent,
possibly contributing to AS.[75]

It is likely that the denuded ependyma is replaced by reactive astrocytes.[23],[61],[62],[65],[66] While experimental
models clearly support this response, the role of astrocytes in the development and severity of hydrocephalus in
humans is still unclear. In congenital and acquired animal models, it has been shown that the astrocytes covering the
denuded ventricular walls formed a new and organized layer.[69] Thus, they create a new layer that may mimic the
lost ependyma, expressing vimentin, which lacks tight junctions, gap junctions, microvilli in contact with the
ventricle, the water channel Aquaporin-4, caveolae, paracellular permeability, and endocytosis.[69] More analyses are
needed in human fetuses to elucidate any possible role of astrocytes in replacing the ependyma.

Inflammation can play an important role in the pathogenesis of hydrocephalus, especially in acquired hydrocephalus
such as PHH. The levels of pro-inflammatory molecules, such as interleukins IL-6, tumor necrosis factor-alpha (TNF-
alpha), or transforming growth factor-beta (TGF-beta) in the CSF correlate with the severity of hydrocephalus.[76]
Limbrick et al.[77],[78]1,[79]1,[80] have shown promising candidates of biomarkers: IL-6, IL-8, CCL-3, TNF-alpha,
interferon-gamma, or TGF-beta; growth factors, such as nerve growth factor; and cell adhesion and cytoskeleton
makers NCAM, tau, or GFAP. In addition, the neuropathological examination of human fetuses has identified signs of
inflammation such as microglial activation and reactive gliosis.[61],[65],[76] Pro-inflammatory cytokines, such as the



ones mentioned above, can modulate epithelial barriers, regulating paracellular permeability.[81] In this regulation,
the pro-inflammatory cytokines modulate the internalization of cell junction proteins.[81] However, the relationship
between inflammation and VZ disruption still needs to be understood, and further studies are needed to focus on this
relationship.

Future work on investigating hydrocephalus

Recently, novel genetic variants related to hydrocephalus have been discovered, at once elucidating important
mechanisms in its pathogenesis, but also underscoring the complexity of the disease. Molecular biological studies are
urgently needed to rigorously investigate these novel pathways, including those involved in inflammation, VZ
disruption, alterations in cell-cell junctions, and aberrant precursor cell biology. The development and analysis of
experimental models of hydrocephalus are a fundamental step in this process. Further research should be performed
to uncover the genetic and molecular mechanisms behind the pathophysiology of hydrocephalus to develop new
diagnostic and treatment strategies.
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