439 research outputs found

    Occurrence of coexisting dendrite morphologies: immiscible fluid displacement in an anisotropic radial hele-shaw cell under a high flow rate regime

    Get PDF
    Viscous fingering morphologies during the displacement of a high viscosity fluid by a low viscosity immiscible fluid in a radial fourfold anisotropic Hele-Shaw cell are examined. By using the kerosene-glycerin system for which the µ/T ratio (µ being the relative viscosity and T the interfacial tension between the fluids) is about ten times higher than that for the commonly used air-glycerin system, we have been able to access the hitherto unexplored Nca 1 regime (capillary number Nca=Uµ/T, U being the advancing fingertip velocity). Within the anisotropy-dominated regime, and when flow rates are significantly high (capillary number well beyond Nca=1), a new phase is seen to evolve wherein the dendrites grow simultaneously along the channels and along the directions making an angle of 45° with the channels, both being kinetically driven. This new phase resembles the one observed in a miscible fluid system at all flow rates of the displacing fluid

    Viscous fingering of miscible fluids in an anisotropic radial hele-shaw cell: coexistence of kinetic and surface-tension dendrite morphology types and an exploration of small-scale influences

    Get PDF
    The evolution of viscous fingering morphology is examined for the case of a system of miscible fluids in an anisotropic radial Hele-Shaw cell. It is shown that dendritic morphologies similar to the kinetic and surface-tension morphology types coexist for this case. The critical role of the means of introducing anisotropy in the Hele-Shaw cell is established, and an explanation of the pattern behavior is offered on the basis of shape discontinuities of the individual elements of the lattice used to induce anisotropy. The ramifications of such an explanation are experimentally verified by demonstrating a clear difference in the morphology evolution in two halves of a single Hele-Shaw cell, one half of which contains square lattice elements, and the other half of which contains circular lattice elements

    Variation in viscous fingering pattern morphology due to surfactant-mediated interfacial recognition events

    Get PDF
    The study of the formation of finger-like patterns during displacement of a viscous fluid by a less viscous one is of technological importance. The morphology of the viscous-finger patterns generated is a function of many parameters such as the flow rate, difference in viscosities of the two fluids and the interfacial tension. We demonstrate herein that the morphology of patterns formed during viscous fingering in a Hele-Shaw cell during displacement of paraffin oil by aqueous solutions of the surfactant sodium dodecyl sulphate (SDS), is extremely sensitive to interfacial tension variation brought about by complexation of divalent cations with the surfactant SDS. The variation in morphology of the patterns formed has been quantified by measuring the fractal dimensions of structures formed in a radial Hele-Shaw cell as well as the average finger width in a linear Hele-Shaw cell. This technique shows promise for studying other interfacial phenomena in chemistry such as biorecognition as well as dynamic processes occurring at interfaces

    Effect of nicotine on serotonin (5-HT) levels in brain of depressed rats

    Get PDF
    Background: Reduction in brain serotonin (5-HT) levels contributes to depression. Nicotine may have antidepressant properties and smokers self-medicate underlying depression. Epidemiological findings suggest that smokers more often demonstrate depressive symptoms than non-smokers and depressed patients are less likely to cease smoking. Therefore, the study was planned to evaluate the effect of nicotine on serotonin levels in brain of depressed rats.Methods: Antidepressant action of study drugs was evaluated using isolation induced hyperactivity model in rats. Rats were divided into five groups with six rats in each group. Study groups: Vehicle in normal rats 1 ml/kg (subcutaneous); vehicle after isolation 1ml/kg (subcutaneous); imipramine 10 mg/kg (intraperitoneal) for 7 consecutive days; single dose of nicotine 0.4 mg/kg (subcutaneous); single dose of nicotine 0.2 mg/kg (inhalational). Brain serotonin assay was carried out. The statistical significance was determined by ANOVA followed by Tukey test (p<0.05).Results: Serotonin levels (55.93ng/g of brain tissue) in rats after isolation were significantly less than in normal rats (335.87ng/g) (p<0.001). In imipramine treated group, serotonin levels (301.4ng/g) after isolation were highly significant as compared to serotonin levels in vehicle treated group after isolation (p<0.001). Nicotine administered by subcutaneous and inhalational route showed significantly higher brain serotonin levels, i.e. 175ng/g and 254.62ng/g respectively as compared to vehicle treated rats after isolation (p<0.001).Conclusions: Single dose nicotine (inhalational) produced significant antidepressant action comparable to that of seven days’ treatment of standard antidepressant drug imipramine in rats. In rats, nicotine by both routes i.e. subcutaneous and inhalational increased serotonergic activity

    Venus Express radio occultation observed by PRIDE

    Get PDF
    Context. Radio occultation is a technique used to study planetary atmospheres by means of the refraction and absorption of a spacecraft carrier signal through the atmosphere of the celestial body of interest, as detected from a ground station on Earth. This technique is usually employed by the deep space tracking and communication facilities (e.g., NASA's Deep Space Network (DSN), ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique for radio occultation experiments, using radio telescopes equipped with Very Long Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE technique for this particular application. We explain in detail the data processing pipeline of radio occultation experiments with PRIDE, based on the collection of so-called open-loop Doppler data with VLBI stations, and perform an error propagation analysis of the technique. Results. With the VEX test case and the corresponding error analysis, we have demonstrated that the PRIDE setup and processing pipeline is suited for radio occultation experiments of planetary bodies. The noise budget of the open-loop Doppler data collected with PRIDE indicated that the uncertainties in the derived density and temperature profiles remain within the range of uncertainties reported in previous Venus' studies. Open-loop Doppler data can probe deeper layers of thick atmospheres, such as that of Venus, when compared to closed-loop Doppler data. Furthermore, PRIDE through the VLBI networks around the world, provides a wide coverage and range of large antenna dishes, that can be used for this type of experiments

    Bridging Python to Silicon: The SODA Toolchain

    Get PDF
    Systems performing scientific computing, data analysis, and machine learning tasks have a growing demand for application-specific accelerators that can provide high computational performance while meeting strict size and power requirements. However, the algorithms and applications that need to be accelerated are evolving at a rate that is incompatible with manual design processes based on hardware description languages. Agile hardware design tools based on compiler techniques can help by quickly producing an application specific integrated circuit (ASIC) accelerator starting from a high-level algorithmic description. We present the SODA Synthesizer, a modular and open-source hardware compiler that provides automated end-to-end synthesis from high-level software frameworks to ASIC implementation, relying on multi-level representations to progressively lower and optimize the input code. Our approach does not require the application developer to write register-transfer level code, and it is able to reach up to 364 GFLOPS/W efficiency (32-bit precision) on typical convolutional neural network operators
    • …
    corecore