25,366 research outputs found

    Asteroseismology and Magnetic Cycles

    Full text link
    Small cyclic variations in the frequencies of acoustic modes are expected to be a common phenomenon in solar-like pulsators, as a result of stellar magnetic activity cycles. The frequency variations observed throughout the solar and stellar cycles contain information about structural changes that take place inside the stars as well as about variations in magnetic field structure and intensity. The task of inferring and disentangling that information is, however, not a trivial one. In the sun and solar-like pulsators, the direct effect of the magnetic field on the oscillations might be significantly important in regions of strong magnetic field (such as solar- / stellar-spots), where the Lorentz force can be comparable to the gas-pressure gradient. Our aim is to determine the sun- / stellar-spots effect on the oscillation frequencies and attempt to understand if this effect contributes strongly to the frequency changes observed along the magnetic cycle. The total contribution of the spots to the frequency shifts results from a combination of direct and indirect effects of the magnetic field on the oscillations. In this first work we considered only the indirect effect associated with changes in the stratification within the starspot. Based on the solution of the wave equation and the variational principle we estimated the impact of these stratification changes on the oscillation frequencies of global modes in the sun and found that the induced frequency shifts are about two orders of magnitude smaller than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and Asteroseismology, to be published on 3 December 2012 at Astronomische Nachrichten 333, No. 10, 1032-103

    Quantized fields and gravitational particle creation in f(R) expanding universes

    Get PDF
    The problem of cosmological particle creation for a spatially flat, homogeneous and isotropic Universes is discussed in the context of f(R) theories of gravity. Different from cosmological models based on general relativity theory, it is found that a conformal invariant metric does not forbid the creation of massless particles during the early stages (radiation era) of the Universe.Comment: 14 pages, 2 figure

    From de Sitter to de Sitter: decaying vacuum models as a possible solution to the main cosmological problems

    Full text link
    Decaying vacuum cosmological models evolving smoothly between two extreme (very early and late time) de Sitter phases are capable to solve or at least to alleviate some cosmological puzzles, among them: (i) the singularity, (ii) horizon, (iii) graceful-exit from inflation, and (iv) the baryogenesis problem. Our basic aim here is to discuss how the coincidence problem based on a large class of running vacuum cosmologies evolving from de Sitter to de Sitter can also be mollified. It is also argued that even the cosmological constant problem become less severe provided that the characteristic scales of the two limiting de Sitter manifolds are predicted from first principles.Comment: 7 pages, 2 figures, title changed, typos corrected, text and new references adde

    Quantum key distribution session with 16-dimensional photonic states

    Get PDF
    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.Comment: 8 pages, 3 figure
    corecore