2,602 research outputs found

    Scale Factor Self-Dual Cosmological Models

    Full text link
    We implement a conformal time scale factor duality for Friedmann-Robertson-Walker cosmological models, which is consistent with the weak energy condition. The requirement for self-duality determines the equations of state for a broad class of barotropic fluids. We study the example of a universe filled with two interacting fluids, presenting an accelerated and a decelerated period, with manifest UV/IR duality. The associated self-dual scalar field interaction turns out to coincide with the "radiation-like" modified Chaplygin gas models. We present an equivalent realization of them as gauged K\"ahler sigma models (minimally coupled to gravity) with very specific and interrelated K\"ahler- and super-potentials. Their applications in the description of hilltop inflation and also as quintessence models for the late universe are discussed.Comment: v3, improved and extended version to be published in JHEP; new results added to sect.2; 4 figures; 17pg

    Hepatic Blood Flow in Hepatic Bilharzial Fibrosis Before and After Surgery

    Get PDF
    This review confirms that in hepatic bilharziaI fibrosis the hepatic blood flow (HBF) values obtained indirectly by the depuration constant of IlII rose bengal are within the limits of normality. The variations of the HBF before and after splenectomy and splenorenal shunt were also studied.S. Afr. Med. J., 48, 1312 (1974)

    Compressive behaviour of double skin sections with stainless steel outer tubes and recycled aggregate concrete

    Get PDF
    An experimental and numerical study into the behaviour of concrete-filled double skin tubular (CFDST) stub columns is presented. A total of eight axial compression tests were carried out, four utilising conventional concrete and four with recycled aggregate concrete. The stub columns were circular in cross-section and each comprised an austenitic stainless steel outer tube and a carbon steel inner tube, of varying dimensions. Accordingly, hollow ratios of 0.67 and 0.55 were considered. The recycled coarse aggregate was made by crushing test specimens from a previous research project, and a replacement ratio of 50% was adopted. During the experiments, similar structural behaviour and failure modes were observed between the specimens with conventional and recycled aggregate concrete. To investigate the behaviour further, a finite element model was developed in ABAQUS; validation of the model against the experimental results from the current work as well as data available in the literature is described. The finite element model was employed to conduct a parametric study to examine the load-bearing contributions of the constituent components of CFDST sections and to assess the influence of the hollow ratio on the structural behaviour. The experimental and numerical ultimate loads are compared with the capacity predictions determined using available design procedures. Overall, the results show that CFDST stub columns with recycled aggregate concrete can achieve similar capacities to their conventional concrete counterparts, demonstrating the potential for the wider use of recycled aggregate concrete, towards more sustainable structural solutions

    Permeability and acoustic velocity controlling factors determined from x-ray tomography images of carbonate rocks

    Get PDF
    Carbonate reservoir rocks exhibit a great variability in texture that directly impacts petrophysical parameters. Many exhibit bi- and multimodal pore networks, with pores ranging from less than 1 μm to several millimeters in diameter. Furthermore, many pore systems are too large to be captured by routine core analysis, and well logs average total porosity over different volumes. Consequently, prediction of carbonate properties from seismic data and log interpretation is still a challenge. In particular, amplitude versus offset classification systems developed for clastic rocks, which are dominated by connected, intergranular, unimodal pore networks, are not applicable to carbonate rocks. Pore geometrical parameters derived from digital image analysis (DIA) of thin sections were recently used to improve the coefficient of determination of velocity and permeability versus porosity. Although this substantially improved the coefficient of determination, no spatial information of the pore space was considered, because DIA parameters were obtained from two-dimensional analyses. Here, we propose a methodology to link local and global pore-space parameters, obtained from three-dimensional (3-D) images, to experimental physical properties of carbonate rocks to improve P-wave velocity and permeability predictions. Results show that applying a combination of porosity, microporosity, and 3-D geometrical parameters to P-wave velocity significantly improves the adjusted coefficient of determination from 0.490 to 0.962. A substantial improvement is also observed in permeability prediction (from 0.668 to 0.948). Both results can be interpreted to reflect a pore geometrical control and pore size control on P-wave velocity and permeability

    An improved non-invasive method for measuring heartbeat of intertidal animals

    Get PDF
    Since its emergence two decades ago, the use of infrared technology for noninvasively measuring the heartbeat rates of invertebrates has provided valuable insight into the physiology and ecology of intertidal organisms. During that time period, the hardware needed for this method has been adapted to currently available electronic components, making the original published description obsolete. This article reviews the history of heartbeat sensing technology, and describes the design and function of a modern and simplified infrared heartbeat rate sensing system compatible with many intertidal and marine invertebrates. This technique overcomes drawbacks and obstacles encountered with previous methods of heartbeat rate measurement, and due to the sensor’s small size, versatility, and noninvasive nature, it creates new possibilities for studies across a wide range of organismal type

    Host Plant Record for the Fruit Flies, Anastrepha fumipennis and A. nascimentoi (Diptera, Tephritidae)

    Get PDF
    The first host plant record for Anastrepha fumipennis Lima (Diptera: Tephritidae) in Geissospermum laeve (Vell.) Baill (Apocynaceae) and for A. nascimentoi Zucchi found in Cathedra bahiensis Sleumer (Olacaceae) was determined in a host plant survey of fruit flies undertaken at the “Reserva Natural da Companhia Vale do Rio Doce”. This reserve is located in an Atlantic Rain Forest remnant area, in Linhares county, state of Espírito Santo, Brazil. The phylogenetic relationships of Anastrepha species and their hosts are discussed. The occurrence of these fruit fly species in relation to the distribution range of their host plants is also discussed
    corecore