913 research outputs found

    Primary sclerosing lipogranuloma: an unusual scrotal mass

    Get PDF
    Sclerosing lipogranuloma (SLG) of the male external genitalia is a rare benign condition presenting as subcutaneous masses. The underlying pathological process is a granulomatous reaction of fatty tissue in this area. The cause of this is unclear but hypothesis stems around the pathogenesis of exogenous lipid degeneration from injection of foreign bodies such as paraffin for penile augmentation. However, endogenous lipid degeneration from other various causes such as infection, trauma, and allergic mechanisms has also been reported. We present the case of a 40-year-old man with primary SLG of the external genitalia. Literature review on the treatment strategies are addressed and discussed

    Falling behind: life expectancy in US counties from 2000 to 2007 in an international context

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The United States health care debate has focused on the nation's uniquely high rates of lack of insurance and poor health outcomes relative to other high-income countries. Large disparities in health outcomes are well-documented in the US, but the most recent assessment of county disparities in mortality is from 1999. It is critical to tracking progress of health reform legislation to have an up-to-date assessment of disparities in life expectancy across counties. US disparities can be seen more clearly in the context of how progress in each county compares to international trends.</p> <p>Methods</p> <p>We use newly released mortality data by age, sex, and county for the US from 2000 to 2007 to compute life tables separately for each sex, for all races combined, for whites, and for blacks. We propose, validate, and apply novel methods to estimate recent life tables for small areas to generate up-to-date estimates. Life expectancy rates and changes in life expectancy for counties are compared to the life expectancies across nations in 2000 and 2007. We calculate the number of calendar years behind each county is in 2000 and 2007 compared to an international life expectancy time series.</p> <p>Results</p> <p>Across US counties, life expectancy in 2007 ranged from 65.9 to 81.1 years for men and 73.5 to 86.0 years for women. When compared against a time series of life expectancy in the 10 nations with the lowest mortality, US counties range from being 15 calendar years ahead to over 50 calendar years behind for men and 16 calendar years ahead to over 50 calendar years behind for women. County life expectancy for black men ranges from 59.4 to 77.2 years, with counties ranging from seven to over 50 calendar years behind the international frontier; for black women, the range is 69.6 to 82.6 years, with counties ranging from eight to over 50 calendar years behind. Between 2000 and 2007, 80% (men) and 91% (women) of American counties fell in standing against this international life expectancy standard.</p> <p>Conclusions</p> <p>The US has extremely large geographic and racial disparities, with some communities having life expectancies already well behind those of the best-performing nations. At the same time, relative performance for most communities continues to drop. Efforts to address these issues will need to tackle the leading preventable causes of death.</p

    Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest.

    Get PDF
    PublishedJournal ArticleResearch Support, Non-U.S. Gov'tThis is an open access article available at http://onlinelibrary.wiley.com/doi/10.1111/mec.13362/abstract.Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the 'migratory syndrome'. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration-associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next-generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state-of-the-art phenotyping platform, we show that field-collected H. armigera display continuous variation in flight performance with individuals capable of flying up to 40 km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long-distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa.UK Biotechnology and Biological Sciences Research Council (BBSRC

    Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways

    Get PDF
    INTRODUCTION: Molecular characterization of the normal epithelial cell types that reside in the mammary gland is an important step toward understanding pathways that regulate self-renewal, lineage commitment, and differentiation along the hierarchy. Here we determined the gene expression signatures of four distinct subpopulations isolated from the mouse mammary gland. The epithelial cell signatures were used to interrogate mouse models of mammary tumorigenesis and to compare with their normal human counterpart subsets to identify conserved genes and networks. METHODS: RNA was prepared from freshly sorted mouse mammary cell subpopulations (mammary stem cell (MaSC)-enriched, committed luminal progenitor, mature luminal and stromal cell) and used for gene expression profiling analysis on the Illumina platform. Gene signatures were derived and compared with those previously reported for the analogous normal human mammary cell subpopulations. The mouse and human epithelial subset signatures were then subjected to Ingenuity Pathway Analysis (IPA) to identify conserved pathways. RESULTS: The four mouse mammary cell subpopulations exhibited distinct gene signatures. Comparison of these signatures with the molecular profiles of different mouse models of mammary tumorigenesis revealed that tumors arising in MMTV-Wnt-1 and p53-/- mice were enriched for MaSC-subset genes, whereas the gene profiles of MMTV-Neu and MMTV-PyMT tumors were most concordant with the luminal progenitor cell signature. Comparison of the mouse mammary epithelial cell signatures with their human counterparts revealed substantial conservation of genes, whereas IPA highlighted a number of conserved pathways in the three epithelial subsets. CONCLUSIONS: The conservation of genes and pathways across species further validates the use of the mouse as a model to study mammary gland development and highlights pathways that are likely to govern cell-fate decisions and differentiation. It is noteworthy that many of the conserved genes in the MaSC population have been considered as epithelial-mesenchymal transition (EMT) signature genes. Therefore, the expression of these genes in tumor cells may reflect basal epithelial cell characteristics and not necessarily cells that have undergone an EMT. Comparative analyses of normal mouse epithelial subsets with murine tumor models have implicated distinct cell types in contributing to tumorigenesis in the different models

    Anyonic interferometry and protected memories in atomic spin lattices

    Full text link
    Strongly correlated quantum systems can exhibit exotic behavior called topological order which is characterized by non-local correlations that depend on the system topology. Such systems can exhibit remarkable phenomena such as quasi-particles with anyonic statistics and have been proposed as candidates for naturally fault-tolerant quantum computation. Despite these remarkable properties, anyons have never been observed in nature directly. Here we describe how to unambiguously detect and characterize such states in recently proposed spin lattice realizations using ultra-cold atoms or molecules trapped in an optical lattice. We propose an experimentally feasible technique to access non-local degrees of freedom by performing global operations on trapped spins mediated by an optical cavity mode. We show how to reliably read and write topologically protected quantum memory using an atomic or photonic qubit. Furthermore, our technique can be used to probe statistics and dynamics of anyonic excitations.Comment: 14 pages, 6 figure

    Persistent wheezing as manifestation of esophageal tubular duplication cyst

    Get PDF
    Duplications of esophagus are rare congenital anomalies and the second most common duplications of the gastrointestinal tract. This form of bronchopulmonary foregut malformation may appear as a cystic mediastinal mass. On chest radiographs they may be visible as middle or posterior masses. On CT they are well marginated and oppose the esophagus. Usually they are asymptomatic, unless they become infected or cause obstruction. We report a case of thoracic tubular duplication cyst in a 10-month-old boy who presented with persistent wheezing that was unsuccessfully treated in out-patient services

    BeadArray Expression Analysis Using Bioconductor

    Get PDF
    Illumina whole-genome expression BeadArrays are a popular choice in gene profiling studies. Aside from the vendor-provided software tools for analyzing BeadArray expression data (GenomeStudio/BeadStudio), there exists a comprehensive set of open-source analysis tools in the Bioconductor project, many of which have been tailored to exploit the unique properties of this platform. In this article, we explore a number of these software packages and demonstrate how to perform a complete analysis of BeadArray data in various formats. The key steps of importing data, performing quality assessments, preprocessing, and annotation in the common setting of assessing differential expression in designed experiments will be covered

    Application of Graphene within Optoelectronic Devices and Transistors

    Full text link
    Scientists are always yearning for new and exciting ways to unlock graphene's true potential. However, recent reports suggest this two-dimensional material may harbor some unique properties, making it a viable candidate for use in optoelectronic and semiconducting devices. Whereas on one hand, graphene is highly transparent due to its atomic thickness, the material does exhibit a strong interaction with photons. This has clear advantages over existing materials used in photonic devices such as Indium-based compounds. Moreover, the material can be used to 'trap' light and alter the incident wavelength, forming the basis of the plasmonic devices. We also highlight upon graphene's nonlinear optical response to an applied electric field, and the phenomenon of saturable absorption. Within the context of logical devices, graphene has no discernible band-gap. Therefore, generating one will be of utmost importance. Amongst many others, some existing methods to open this band-gap include chemical doping, deformation of the honeycomb structure, or the use of carbon nanotubes (CNTs). We shall also discuss various designs of transistors, including those which incorporate CNTs, and others which exploit the idea of quantum tunneling. A key advantage of the CNT transistor is that ballistic transport occurs throughout the CNT channel, with short channel effects being minimized. We shall also discuss recent developments of the graphene tunneling transistor, with emphasis being placed upon its operational mechanism. Finally, we provide perspective for incorporating graphene within high frequency devices, which do not require a pre-defined band-gap.Comment: Due to be published in "Current Topics in Applied Spectroscopy and the Science of Nanomaterials" - Springer (Fall 2014). (17 pages, 19 figures
    corecore