51,690 research outputs found
A variety of lepton number violating processes related to Majorana neutrino masses
A Majorana type of the neutrino mass matrix induces a class of lepton number
violating processes. Cross sections of these reactions are given in terms of
the neutrino mass matrix element, and a semi-realistic event rate is estimated.
These processes provide mass and mixing parameters not directly accessible by
the neutrino oscillation experiments. If these processes are discovered with a
larger rate than given here, it would imply a new physics of the lepton number
violation not directly related to the Majorana neutrino mass, such as R-parity
violating operators in SUSY models.Comment: 15 pages, 1 figur
Negative Specific Heat in a Quasi-2D Generalized Vorticity Model
Negative specific heat is a dramatic phenomenon where processes decrease in
temperature when adding energy. It has been observed in gravo-thermal collapse
of globular clusters. We now report finding this phenomenon in bundles of
nearly parallel, periodic, single-sign generalized vortex filaments in the
electron magnetohydrodynamic (EMH) model for the unbounded plane under strong
magnetic confinement. We derive the specific heat using a steepest descent
method and a mean field property. Our derivations show that as temperature
increases, the overall size of the system increases exponentially and the
energy drops. The implication of negative specific heat is a runaway reaction,
resulting in a collapsing inner core surrounded by an expanding halo of
filaments.Comment: 12 pages, 3 figures; updated with revision
Boron-oxygen defect imaging in p-type Czochralski silicon
In this work, we demonstrate an accurate method for determining the effective boron-oxygen (BO) related defect density on Czochralski-grown silicon wafers using photoluminescence imaging. Furthermore, by combining a recently developed dopant density imaging technique and microscopic Fourier transform infrared spectroscopy measurements of the local interstitial oxygen concentration [Oi ], the BO-related defect density, [Oi ], and the boron dopant density from the same wafer were determined, all with a spatial resolution of 160 μm. The results clearly confirm the established dependencies of the BO-related defect density on [Oi ] and the boron dopant density and demonstrate a powerful technique for studying this important defect.This work was supported by the Australian Research
Council (ARC) Future Fellowships program and the
Australian Renewable Energy Agency (ARENA) fellowships
program
A system-approach to the elastohydrodynamic lubrication point-contact problem
The classical EHL (elastohydrodynamic lubrication) point contact problem is solved using a new system-approach, similar to that introduced by Houpert and Hamrock for the line-contact problem. Introducing a body-fitted coordinate system, the troublesome free-boundary is transformed to a fixed domain. The Newton-Raphson method can then be used to determine the pressure distribution and the cavitation boundary subject to the Reynolds boundary condition. This method provides an efficient and rigorous way of solving the EHL point contact problem with the aid of a supercomputer and a promising method to deal with the transient EHL point contact problem. A typical pressure distribution and film thickness profile are presented and the minimum film thicknesses are compared with the solution of Hamrock and Dowson. The details of the cavitation boundaries for various operating parameters are discussed
Calibration of Distributionally Robust Empirical Optimization Models
We study the out-of-sample properties of robust empirical optimization
problems with smooth -divergence penalties and smooth concave objective
functions, and develop a theory for data-driven calibration of the non-negative
"robustness parameter" that controls the size of the deviations from
the nominal model. Building on the intuition that robust optimization reduces
the sensitivity of the expected reward to errors in the model by controlling
the spread of the reward distribution, we show that the first-order benefit of
``little bit of robustness" (i.e., small, positive) is a significant
reduction in the variance of the out-of-sample reward while the corresponding
impact on the mean is almost an order of magnitude smaller. One implication is
that substantial variance (sensitivity) reduction is possible at little cost if
the robustness parameter is properly calibrated. To this end, we introduce the
notion of a robust mean-variance frontier to select the robustness parameter
and show that it can be approximated using resampling methods like the
bootstrap. Our examples show that robust solutions resulting from "open loop"
calibration methods (e.g., selecting a confidence level regardless of
the data and objective function) can be very conservative out-of-sample, while
those corresponding to the robustness parameter that optimizes an estimate of
the out-of-sample expected reward (e.g., via the bootstrap) with no regard for
the variance are often insufficiently robust.Comment: 51 page
Kinetics and moving species during Co2Si formation by rapid thermal annealing
We have investigated the growth kinetics and identified the moving species during Co2Si formation by rapid thermal annealing (RTA). For the kinetics study, samples which consisted of a thin Co film on an evaporated Si substrate were used. To study which species moves, samples imbedded with two very thin Ta markers were employed. Upon RTA, only one silicide phase, Co2Si, was observed to grow before all Co was consumed. The square root of time dependence and the activation energy of about 2.1±0.2 eV were observed during the Co2Si formation up to 680 °C. The marker study indicated that Co is the dominant mobile species during Co2Si formation by RTA. We conclude that Co2Si grows by the same mechanisms during RTA and conventional thermal annealing
Silicon resistor to measure temperature during rapid thermal annealing
A resistor composed of a piece of Si wafer and two thin silver wires attached to it, can reliably sense the temperature during rapid thermal annealing (RTA). As constant electric current passes through the Si piece, the resistivity change of Si with temperature produces a voltage signal that can be readily calibrated and converted to an actual temperature of the samples. An accuracy better than ±10 °C is achieved between 300° and 600 °C
- …