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SUMMARY

The classical EHL point contact problem is solved using a new

"system-approach," similar to that introduced by Houpert and Hamrock for the

line-contact problem. Introducing a body-fitted coordinate system, the troublesome

free-boundary is transformed to a fixed domain. The Newton-Raphson method can then

be used to determine the pressure distribution and the cavitation boundary subject to

the Reynolds boundary condition. This method provides an efficient and rigorous way

of solving the EHL point contact problem with the aid of a supercomputer and a

promising method to deal with the transient EHL point contact problem. A typical

pressure distribution and film thickness profile are presented and the minimum film

thicknesses are compared with the solution of Hamrock and Dowson. The details of the

cavitation boundaries for various operating parameters are discussed.
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NOMENCLATURE

semi-major and semi-minor axes of contact ellipse, m

The Young modulus of elasticity, Pa

E I

f

G

6

H

2
equivalent elastic constant, Pa __ =

E'

normal force, N

dimensionless material parameter, RE'

dimensionless cavitation boundary

cavitation boundary function

dimensionless film thickness
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H
min

H
0

h

dimensionless minimum film thickness

dimensionless reference film thickness

film thickness, m

h
mln

h 0

minimum film thickness, m

reference film thickness, m

k ellipticity parameter

normal direction

P dimensionless pressure

P
0

Roelands pressure-viscosity constant, 1,96e8 Pa

P pressure, Pa

Ph

U
m

x,y

Hertzian pressure, Pa

mean entraining velocity, m/s

cartesian coordinates

INTRODUCTION

In the design of nonconformal contact machine elements, knowledge of elasto-

hydrodynamic lubrication (EHL) is needed. Since the 1970's, several authors have

presented their results of the point-contact EHL problem. Among them, the following

Hamrock and Dowson (H.D.) formula (ref. i) is widely used in the design of many

machine elements:

(Hmin)H.D.. 3.63U0.68G049W 4.073(1 - e 0.68k ) (i)

For an EHL solution, a nonlinear integro-differential equation must be solved,

the Reynolds equation and the elasticity equation. The nonlinearities are due to:

(i) the dependence of the lubricant properties, (viscosity and density), on the

pressure; (2) the dependence of the film thickness on the pressure; and (3) the free

boundary at the exit region. Even for the hydrodynamic lubrication, since the free

boundary is dependent on the pressure distribution, the Reynolds equation has non-

linear characteristics. It is well known to computational lubrication engineers that

the numerical treatment of the point-contact EHL problem has inherent difficulties.

One can see how difficulties arise upon careful consideration of the above mentioned

nonlinearities. For example, one of the major difficulties is the piezoviscous

effect. At high loads the viscosity of the fluid can vary by i0 orders of magnitude

within the conjunction, which caused the pressure spikes and numerical difficulties.

Another difficulty associated with solving the EHL point-contact case is to

locate the free boundary where cavitation occurs. In the solution presented by H.D.

Christopherson's method (ref. 2) was used together with a Gauss-Seidel iterative

scheme. The essence of this method is to truncate the negative pressures as they

occur during iteration and the outlet boundary is located automatically. Oh and

Rhode (ref. 7) solved the point contact EHL problem using a finite element method and

Newton's method. But, it has been found that the nonnegativity condition was needed



Newton's method. But, it has been found that the nonnegativity condition was needed

to be checked in each iteration and the discrimination between the continuous film

region and the cavitated region was troublesome. Though the solution can be obtained

it is unavoidable that the solution is dependent upon the mesh size distribution near

the boundary.

Finally, the large amount of computation time and computer memory space are

concerns in this calculation. The majority of CPU time is devoted to the calculation

of the elastic deformation. In general, the Gauss-Seidel iterative method requires

more than one hundred times of iterations to obtain the converged solution. Further-

more, to obtain a solution for a given load, one additional loop is required to find

the reference film thickness.

This all adds up to the fact that it is very difficult to achieve a stable

solution at relatively high loads and short CPU times. Recognizing this, Houpert and

Hamrock (ref. 8) devised an elegant scheme for the line contact case that enabled

higher load calculations and saved on computational time as well. This scheme was an

adaptation of Okamura (ref. 9) and became known as the "system approach." Using a

Newton-Raphson algorithm, the pressures, the integration constant, and the reference

film thickness are found simultaneously. Here advantage has been taken of the fact

that the one-dimensional Reynolds equation can be integrated analytically to obtain

dp/dx and in turn used with the Reynolds' boundary conditions to locate the cavi-

tation boundary.

To the author's knowledge, the system-approach has not been successfully applied

to the point-contact problem. Unlike the line-contact case, the two dimensional

Reynolds equation can not be integrated analytically. However, a successful

formulation of the system-approach can nevertheless be accomplished by introducing a

body-fitted coordinate system and transforming the unknown physical boundary into a

fixed computational boundary. The unknown boundary function becomes a part of the

system matrix. In addition, the reference film thickness can be calculated

simultaneously as was done in the line-contact case. This reduces the number of

visits to the elastic deformation subroutine substantially. However, as was pointed

out by Lubrecht et al., (ref. 3), computer memory may be a problem since the Jacobian

matrix is a full matrix due to the elasticity equation. This problem can be overcome

by using the block tridiagonal approximation of the system matrix. The matrix

inversion is accomplished by the Thomas algorithm, and there is no need to store the

whole Jacobian matrix. Furthermore, the force-balance loop can be obviated by

including it in the system equations and solving simultaneously.

In this paper, the classical EHL point-contact problem is revisited with a new

formulation: a free boundary value problem using the system-approach described

above. The minimum film thicknesses are compared with equation (i) and the details

of the free boundary are discussed.

2. ANALYTIC FORMULATION

2.1 Contact Geometry

Figure 1 shows the physical model of the elliptical contact, where the x-axis

represents the rolling or sliding direction, x A and YB are the inlet boundaries

and x = _(y) is the outlet or cavitation boundary. The ellipticity parameter is

expressed in terms of the curvature difference (T), the elliptic integral of the

first (F), and the second kind (S) as



k - (2)

where

Defining r as

Therefore, given

2F - S(l + T)

s(l - T)

d_

S z

T

Ry/Rx, equation (2) can be rewritten as

[ ]k = (r + i) _ - r

r, the ellipticity parameter can be calculated iteratively.

(3)

2.2 Governing Equations

Assuming isothermal conditions and that the lubricant is Newtonian, the steady-

state Reynolds equation for the point contact problem is

] O(ph)
(4)

and, using the parabolic approximation for the geometry, the film thickness is

expressed by

2 2 y' )'dx'

_xX 2RyY _E'2 f fn . p(x', dy'
h(x,y) = h 0 + +_ +_ (5)

_(x- x'_2 + (y _ y, _
The applied normal force may be balanced by the generated hydrodynamic pressure

distribution,

f " ; ;n p(x,y)dx dy (6)



Applying the Reynolds boundary condition and symmetry condition at the x-axis,

the boundary conditions are:

p = 0 at x = XA; 0 _ y _ y_,

p -- 0 at x A -- < x < g(y_) ; y = Ye'

8p

P =0; _n-O at
x -%(y); 0 < y_< y_,

(7)

_P - 0 at x A < x < _(0); y - O.

8y

The viscosity-pressure relation is modeled by the Roelands (ii) equation, i.e.,

'°e I}. _ -i (8)

Ps

Z

- --(in _0 + 9.67) (9)

P0

and, the Dowson-Higginson relation (12) is used for the density-pressure relation,

0.59xi09 + 1.34p

# " P0 p in Pa (i0)

0.59xi09 + p

2.3 The Dimensionless Equations

Letting

P = p hRx x y__, H - __, X = _, Y - _, G

Ph b 2 b a

_l -- --m

2_ab #0 #0

" GPh' Ph s

the equations (4) to (6) become

H(X,Y) -H 0 + _ x 2 + + --

_2 _ _TX _ X, )2 + k2(y _ y, )

SS 27nP(X,Y)dX dY =
3

where,

2

12#0UmR x

bJph

k 2

r C I I __, C 2 = __
r

k_PhR x

E'b

(ii)

(12)

(13)



The dimensionless parameters used here can be related to those used by Hamrock and

Dowson as follows,

W [a)

k_(l + r)

c 2 s
4St

(14)

}1/3

a 6Wk2S r
:B

R x _ 1 +r

when K = 1 (circular contact), c I and c 2 are i.

2.4 Coordinate Transformation

Introducing the body-fitted coordinate system described in reference 13,

YB(X - XA)

- X A

_ _Y
(15)

the following equations are obtained:

The Reynolds equation

YB _ _ 8P

L_P'a'H°)" _a- x_l2 8( q_ k_ aTq_ -?_ q_-XA_

where, _' represents dG/dY.

The film thickness equation

0[0pl

]21{_ - xAl 2c2
+ XA + ci_ 2 + _ D(P,_)

YB _2

_M_ . 0

(16)

(17)

The D represents an integral operator which calculates the elastic deformation of

two solids in contact resulting from the pressure distribution in the fluid film

6



region (_). In this paper, the technique presented by Chang (ref. 14) is used.

method provides and efficient way of evaluating D without lengthy and complex

mathematical expressions. Since the coordinate transformation can easily be

implemented to this method, the details of the algorithm are not presented here.

The force balance equation is

- X A

YB

This

In the above formulation, L
1

is integral operator.

2_
__ d( d_ - _ - o (18)

3

is the nonlinear partial differential operator and L
2

3. NUMERICAL METHOD

3.1 Spatial Discretization

To provide a small mesh size near the pressure spike region, an interior

stretching function (ref. 15) is adopted along the E-axis. The finite difference

representation of the transformed Reynolds equation is provided in the appendix.

3.2 Newton's Method

The system equations are

LI(P,G,H0) - 0

L2(P,G) - 0

In reference 13, for hydrodynamic case, L 1 has been solved using the Thomas

algorithm to find P and G, and L 2 was used to determine H 0 by the force

balance loop. For the EHL case, the same method can be used. However, if L
2

be put in the system equation and be solved simultaneously without creating a

computer memory problem, the computation will be greatly reduced.

(19)

can

The system equation for Newton's method can be written as

{u)o'I.{u}o÷{6u 
n÷l n

H0 - H0 + 6H 0

(20)

(21)

(22)

where

and [A], {B>, <C} T

{u)- "*[P[,a,GjI, I -2, NI - i; J - i, NJ - 1

are the elements in the Jacobian matrix.

In EHL, due to the integral operator D, [A] is full matrix. But, since large

amounts of storage and computational time are required to solve it, the block

tridiagonal matrix approximation can be used. Each block matrix is a full matrix

which is different from the one-sided arrow shape matrix that resulted from the



hydrodynamic case where the elasticity equation is not needed. The unknown

matches the residual function at the cavitation boundary where the pressures are

known from the Reynolds boundary condition.

Equation (20) can be rearranged as

EA I ul•IBI6M0-{LI}

From equation (23)

L2

(23)

(24)

16ul-cAj1{  }C JIIBI6M0 (25)
Then using equations (24) and (25)

L2 - {C)r[A]-_{ Ll} (26)
_H 0

(c) tAj1{s}
And {_u} can be calculated using equations (25) and (26). In equation (26), [A]-I{B}

and [A]'I{LI} are obtained by the Thomas algorithm and then stored temporarily and

used in equation (25).

The convergence criteria are

(i) Pressure

I i +I n I

I J
< 5.0xlO

I J

J -3
< 5.0xl0

(2) Cavitation boundary

< 5.0xlO -3

-3

J

(3) Reference film thickness I n÷l nl
IH - g 0

n

H o

4. RESULTS AND DISCUSSION

The dimensionless material parameter used in this analysis is G = 3488 in which

z = 0.55, _0 = 0.018 Ns/m 2, U _ 0.3 and E' = 2.19xi0 "II N/m 2. In figures 2 and 3,

the pressure distribution and film thickness profile for the circular contact is

presented. The inlet boundary used for this analysis is defined as X A = -4.0 and

Ym = 2.0. The maximum pressure is 1.33 times the maximum Hertzian pressure or
515 MPa which occurs on the x-axis. The dimensionless minimum film thickness is 0.27

and it occurs at the side-lobes, X = 0.49 and Y = 0.6.



The majority of the computation time is used for the calculation of the elastic

deformations and the differentiations of the residual functions with respect to the

cavitation boundary function since the integral operator is a function of it. It

takes about 20 sec on the CRAY-XMP at NASA Lewis Research Center for 1 Newton

iteration with 3060 nodal points of the whole domain, and, in general, the converged

solution can be obtained within 3 iterations as long as the initial guess is within

the sphere of attraction. It was reported (ref. 3) that using the multigrid

interative method it took 2 hr of CPU time on a VAXlI/750 with 2937 nodal points.

Since a different computer was used, a direct comparison is difficult. The current

method is quite fast partly because the direct matrix inversion of the block matrices

is vertorizable which makes it well suited to the supercomputing. Also because the

amount of visits to the elasticity subroutine is small and there is no need of a

force balance loop. When the current work is used for transient calculations, the

previous solution is used as a guess to the next time step and it accelerate the

solution process, but this is not true for the iterative method. This fact supports

the current work as a good candidate for transient EHL point contact computation.

The calculated minimum film thickness in this investigation for various operating

parameters are provided in table I along with those obtained from the H.D. Formula,

equation i. In general, the results from this analysis were higher than those

predicted by the H.D. for the circular contact case. However, for the elliptical

contact our results were lower. But the differences do not exceed i0 percent.

Figure 4 shows another pressure distribution for circular contact where a very

steep pressure spike occurs. The operating condition is W = 9.154xi0 "s,

U = 1.62xi0 -II, or _ = 5.723 and _ = 0.862. The maximum pressure is 2.89 times the

maximum Hertzian pressure or 1.04 GPa. To the authors' experience, the solution is

so unstable beyond this operation range that the convergence usually fails. When

U = 6.432xi0 -12, the maximum possible W is 2.367xi0 "7 for circular contact, or _ =

7.862 and _ = 0.0964. According to numerous computations, it is found that the

value of _ dictates the numerical stability of current method. The numerical

stability may be enhanced by reducing the step sizes near the pressure spike region.

But it should be noticed that the Roelands viscosity-pressure relation is known to be

valid up to 1 GPa or lower. At such _high pressure the lubricant behaves as a

solid-like material and becomes non-Ne_tonian. Also, recently, it was observed that

slippage of the lubricant occurs at or very near the surface (ref. 16). Thus it is

believed that the modification of the classical Reynolds equation including the non-

Newtonian effect and a more realistic pressure-viscosity relation including the

thermal effect are needed to investigate the lubrication performance for the high

load and high speed cases.

Figure 5 depicts the calculated free boundaries of the circular contacts for

various operating parameters. The x-axis is somewhat stretched to exaggerate the

differences. The dotted line represents the Hertzian circle. The general trend is

that, as expected, the low speed condition results in a curve that conforms more to

Hertzian (dry) contact circle. Comparing curves i and 2, the boundary on the X-axis

stretches more outside for the higher load but elsewhere it is closer to the Hertzian

contact circle. Comparing curves 3 and 4, increasing the speed parameter leads to a

thicker film and tends to straighten out the boundary.

5. CONCLUSIONS

The classical EHL point contact problem is solved using a new "system-approach,"

similar to that introduced by Houpert and Hamrock for the line-contact problem. This



requires inverting a system-matrix (i.e., the Jacobian) which via a body-fitted
coordinate transformation includes boundary conditions at the free boundary.
Further, a force-balance loop is avoided. Using a Newton-Raphson algorithm, the

pressures, the cavitation boundary curve, and the reference film thickness are found

simultaneously. The method is computationally fast and has no problem with locating

the cavitation boundary. This study revealed that

i. The minimum film thickness obtained in this study were all within i0 percent

of the predictions using the H.D. Formula.

2. The algorithm is well suited to performing transient EHL calculations using

the supercomputer and the solution at each time step accelerates the succeeding

solution.

3. rlumerical instabilities were encountered when the value of 2, that is, W or

G is high. To obtain a more stable solution, it is believed that the Reynolds

equation should be modified to include the non-Newtonian effect and a more realistic

pressure-viscosity relation for high pressure.

4. The calculated cavitation boundary is near the Hertzian contact circle but

deviates it for high speed.
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APPENDIX- DISCRETIZATIONONTHETRANSFORMEDREYNOLDSEQUATIONFORk = i.

(LI)I, J = (R1

qI,J÷i/2
+ R2 --

- R6(qI_I/z,jDP3

re

--(PI,J÷I - PI,J ) - ql, J-I/2(PI,J - PI'J-I)I - R3( R4qI'J+I/2DP! - R5qI'J-i/2DP2)

)

- _i_:j2,jHi_lj2,j ) _0
- q__II2,jDP4)- RB(_,II2,jHI+_I2,j

where,

2

DP l - -r_(Pi_l, J

R 6 =,

R I

R 3

2

2Y B

2

(Gj - XA) (I + r{)_ 2

2

R 2 =

11 + r_;)A_ 2

El

r_(l + r_)(i + r_)_A_

_I J÷i/2

R 4 =

' J-I/2

R 5 " ^

Gj_I/2 - X A

_i _ ' j

R7 I

R 8

2{IC_, J )z

(i + r¢)A{2(C,j - XA) 2

2XY s

(dj - XA)A{(1÷r _)

2

+ Pi_l,J÷l) + (r_- i)(PI,J ÷ PI,J -I) + (Pi÷1,o +PI.I,J.I)
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3
PI,JHI,J

qI,J " _I,J

+ PI-I,J-I} + (r2_- I)(Pl,J + Pl,J-l) + (Pl_l,J + PI+l,J-l)DP2 = -r_(Pi_l, J

2
6

DP 3 - -r_(Pi,j_ I + PI÷I,j_I) + (r W

- I)(PI,j + Pill,J) + (Pi,J.l + PI÷l,J+l)

2 2 + pl_l,j.l )

DP_ = -r_(P[,j-! + PI-i,J -I) + (r W -i)(PI,J + P[-l, J) + (PI,J÷I
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TABLE I. - SELECTED MINIMUM FILM THICKNESS

r

1.0

1.0

1.0

1.0

6.0

6.0

16.0

k

1.0

1.0

1.0

1.0

3.25

3.25

6.037

UxlO 12

6.432

6.432

7.968

16.204

6.432

6.432

6.432

WxlO s

6.721

11.227

5.566

5.566

13.700

27.464

32.707

_mln

0.398

0.270

0.525

0.798

0.729

0.433

0.626

H
rain

0.369

0.252

0.490

0.794

0.763

0.456

0.654

H
rain - HminH. B.

H .
mln

7.3

6.7

6.7

0.5

-4.7

-2.9

-4.5

xl00

f

-
/ -- Cavitation
/" boundary

Figure 1.--Point contact EHL model.

2.5
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-1
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-4.0 -2.7 -1,5 -2 1.1

x - axis

Figure 2.--Pressure distribution for W = 1.123 x 10 -7,
U = 6.432 x 10 -12 , G = 3488, and k = 1.
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.27

3i194161
x - axis

Figure 3. --Film thickness profile near contact

for parameters in Figure 2.

J-1

19
-4.0 -2.7 -1 5 - 2 1 0

x - axis

Figure 4 --Pressure distribution fof W = 9.154 x 10 -8

U=l.620x10-71, G=3488, andk=1

Curve
number

1 W = 1.123E-7, U = 6.432E-12

2 W = 6.712E-8, U = 6.432E-12
3 W = 5.566E-8, U = 7.968E-12
4 W -- 5.566E-8, U = 1620E-11

1,2 34

.5 1.0

Figure 5,.--Calculated cavitation boundaries.
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