308 research outputs found
Flow around a cube in a turbulent boundary layer: LES and experiment
We present a numerical simulation of flow around a surface mounted cube placed in a turbulent boundary layer which, although representing a typical wind environment, has been specifically tailored to match a series of wind tunnel observations. The simulations were carried out at a Reynolds number, based on the velocity U at the cube height h, of 20,000—large enough that many aspects of the flow are effectively Reynolds number independent. The turbulence intensity was about 18% at the cube height, and the integral length scale was about 0.8 times the cube height h. The Jenson number Je=h/z0, based on the approach flow roughness length z0, was 600, to match the wind tunnel situation. The computational mesh was uniform with a spacing of h/32, aiding rapid convergence of the multigrid solver, and the governing equations were discretised using second-order finite differences within a parallel multiblock environment. The results presented include detailed comparison between measurements and LES computations of both the inflow boundary layer and the flow field around the cube including mean and fluctuating surface pressures. It is concluded that provided properly formulated inflow and surface boundary conditions are used, LES is now a viable tool for use in wind engineering problems concerning flow over isolated bodies. In particular, both mean and fluctuating surface pressures can be obtained with a similar degree of uncertainty as usually associated with wind tunnel modelling
On Neutrino Masses and a Low Breaking Scale of Left-Right Symmetry
In left-right symmetric models (LRSM) the light neutrino masses arise from
two sources: the seesaw mechanism and a VEV of an SU(2) triplet. If the
left-right symmetry breaking, , is low, v_R\lsim15\TeV, the
contributions to the light neutrino masses from both the seesaw mechanism and
the triplet Yukawa couplings are expected to be well above the experimental
bounds. We present a minimal LRSM with an additional U(1) symmetry in which the
masses induced by the two sources are below the eV scale and the two-fold
problem is solved. We further show that, if the U(1) symmetry is also
responsible for the lepton flavor structure, the model yields a small mixing
angle within the first two lepton generations.Comment: 18 pages references added published versio
Liberating Efimov physics from three dimensions
When two particles attract via a resonant short-range interaction, three
particles always form an infinite tower of bound states characterized by a
discrete scaling symmetry. It has been considered that this Efimov effect
exists only in three dimensions. Here we review how the Efimov physics can be
liberated from three dimensions by considering two-body and three-body
interactions in mixed dimensions and four-body interaction in one dimension. In
such new systems, intriguing phenomena appear, such as confinement-induced
Efimov effect, Bose-Fermi crossover in Efimov spectrum, and formation of
interlayer Efimov trimers. Some of them are observable in ultracold atom
experiments and we believe that this study significantly broadens our horizons
of universal Efimov physics.Comment: 17 pages, 5 figures, contribution to a special issue of Few-Body
Systems devoted to Efimov Physic
A Systematic Analysis of the Lepton Polarization Asymmetries in the Rare B Decay, B -> X_s\tau^+\tau^-
The most general model-independent analysis of the lepton polarization
asymmetries in the rare B decay, \Bstt, is presented. We present the
longitudinal, normal and transverse polarization asymmetries for the
and , and combinations of them, as functions of the Wilson coefficients
of twelve independent four-Fermi interactions, ten of them local and two
nonlocal. These procedures will tell us which type of operators contributes to
the process. And it will be very useful to pin down new physics systematically,
once we have the experimental data with high statistics and a deviation from
the Standard Model is found.Comment: 24 pages, 8 figures, LaTe
Lepton Masses and Mixing in a Left-Right Symmetric Model with a TeV-scale Gravity
We construct a left-right symmetric (LRS) model in five dimensions which
accounts naturally for the lepton flavor parameters. The fifth dimension is
described by an orbifold, S_1/Z_2 times Z'_2, with a typical size of order
TeV^{-1}. The fundamental scale is of order 25 TeV which implies that the gauge
hierarchy problem is ameliorated. In addition the LRS breaking scale is of
order few TeV which implies that interactions beyond those of the standard
model are accessible to near future experiments. Leptons of different
representations are localized around different orbifold fixed points. This
explains, through the Arkani-Hamed-Schmaltz mechanism, the smallness of the tau
mass compared to the electroweak breaking scale. An additional U(1) horizontal
symmetry, broken by small parameters, yields the hierarchy in the charged
lepton masses, strong suppression of the light neutrino masses and accounts for
the mixing parameters. The model yields several unique predictions. In
particular, the branching ratio for the lepton flavor violating process mu^-
--> e^+ e^- e^- is comparable with its present experimental sensitivity.Comment: 21 pages, 1 figure, references added, discussion on the
predictiveness of the model in the generic non-universal case added, to
appear in PR
Lepton Polarization and Forward-Backward Asymmetries in b -> s tau+ tau-
We study the spin polarizations of both tau leptons in the decay b -> s tau+
tau-. In addition to the polarization asymmetries involving a single tau, we
construct asymmetries for the case where both polarizations are simultaneously
measured. We also study forward-backward asymmetries with polarized tau's. We
find that a large number of asymmetries are predicted to be large, >~ 10%. This
permits the measurement of all Wilson coefficients and the b-quark mass, thus
allowing the standard model (SM) to be exhaustively tested. Furthermore, there
are many unique signals for the presence of new physics. For example,
asymmetries involving triple-product correlations are predicted to be tiny
within the SM, O(10^{-2}). Their observation would be a clear signal of new
physics.Comment: 21 pages, LaTeX, 4 figures (included). Paper somewhat reorganized,
references greatly expanded, conclusions unchange
Cosmological evolution of interacting dark energy in Lorentz violation
The cosmological evolution of an interacting scalar field model in which the
scalar field interacts with dark matter, radiation, and baryon via Lorentz
violation is investigated. We propose a model of interaction through the
effective coupling . Using dynamical system analysis, we study the
linear dynamics of an interacting model and show that the dynamics of critical
points are completely controlled by two parameters. Some results can be
mentioned as follows. Firstly, the sequence of radiation, the dark matter, and
the scalar field dark energy exist and baryons are sub dominant. Secondly, the
model also allows the possibility of having a universe in the phantom phase
with constant potential. Thirdly, the effective gravitational constant varies
with respect to time through . In particular, we consider a simple
case where has a quadratic form and has a good agreement with the
modified CDM and quintessence models. Finally, we also calculate the
first post--Newtonian parameters for our model.Comment: 14 pages, published versio
Tensor completion in hierarchical tensor representations
Compressed sensing extends from the recovery of sparse vectors from
undersampled measurements via efficient algorithms to the recovery of matrices
of low rank from incomplete information. Here we consider a further extension
to the reconstruction of tensors of low multi-linear rank in recently
introduced hierarchical tensor formats from a small number of measurements.
Hierarchical tensors are a flexible generalization of the well-known Tucker
representation, which have the advantage that the number of degrees of freedom
of a low rank tensor does not scale exponentially with the order of the tensor.
While corresponding tensor decompositions can be computed efficiently via
successive applications of (matrix) singular value decompositions, some
important properties of the singular value decomposition do not extend from the
matrix to the tensor case. This results in major computational and theoretical
difficulties in designing and analyzing algorithms for low rank tensor
recovery. For instance, a canonical analogue of the tensor nuclear norm is
NP-hard to compute in general, which is in stark contrast to the matrix case.
In this book chapter we consider versions of iterative hard thresholding
schemes adapted to hierarchical tensor formats. A variant builds on methods
from Riemannian optimization and uses a retraction mapping from the tangent
space of the manifold of low rank tensors back to this manifold. We provide
first partial convergence results based on a tensor version of the restricted
isometry property (TRIP) of the measurement map. Moreover, an estimate of the
number of measurements is provided that ensures the TRIP of a given tensor rank
with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its
Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral
Rare Charm Decays in the Standard Model and Beyond
We perform a comprehensive study of a number of rare charm decays,
incorporating the first evaluation of the QCD corrections to the short distance
contributions, as well as examining the long range effects. For processes
mediated by the transitions, we show that sensitivity to
short distance physics exists in kinematic regions away from the vector meson
resonances that dominate the total rate. In particular, we find that
and are sensitive to non-universal
soft-breaking effects in the Minimal Supersymmetric Standard Model with
R-parity conservation. We separately study the sensitivity of these modes to
R-parity violating effects and derive new bounds on R-parity violating
couplings. We also obtain predictions for these decays within extensions of the
Standard Model, including extensions of the Higgs, gauge and fermion sectors,
as well as models of dynamical electroweak symmetry breaking.Comment: 45 pages, typos fixed, discussions adde
Effect of Grain Boundary Character Distribution on the Impact Toughness of 410NiMo Weld Metal
Grain boundary character distributions in 410NiMo weld metal were studied in the as-welded, first-stage, and second-stage postweld heat treatment (PWHT) conditions, and these were correlated with the Charpy-V impact toughness values of the material. The high impact toughness values in the weld metal in the as-welded and first-stage PWHT conditions compared to that in the second-stage condition are attributed to the higher fraction of low-energy I pound boundaries. A higher volume fraction of retained austenite and coarser martensite after second-stage PWHT accompanied by the formation of the ideal cube component in the 2-hour heat-treated specimen led to a reduction in the toughness value. A subsequent increase in the PWHT duration at 873 K (600 A degrees C) enhanced the formation of {111}aOE (c) 112 >, which impedes the adverse effect of the cubic component, resulting in an increase in the impact toughness. In addition to this, grain refinement during 4-hour PWHT in the second stage also increased the toughness of the weld metal
- …