3,506 research outputs found

    A PDMS-Based 2-Axis Waterproof Scanner for Photoacoustic Microscopy

    Get PDF
    Optical-resolution photoacoustic microscopy (OR-PAM) is an imaging tool to provide in vivo optically sensitive images in biomedical research. To achieve a small size, fast imaging speed, wide scan range, and high signal-to-noise ratios (SNRs) in a water environment, we introduce a polydimethylsiloxane (PDMS)-based 2-axis scanner for a flexible and waterproof structure. The design, theoretical background, fabrication process and performance of the scanner are explained in details. The designed and fabricated scanner has dimensions of 15 × 15 × 15 mm along the X, Y and Z axes, respectively. The characteristics of the scanner are tested under DC and AC conditions. By pairing with electromagnetic forces, the maximum scanning angles in air and water are 18° and 13° along the X and Y axes, respectively. The measured resonance frequencies in air and water are 60 and 45 Hz along the X axis and 45 and 30 Hz along the Y axis, respectively. Finally, OR-PAM with high SNRs is demonstrated using the fabricated scanner, and the PA images of micro-patterned samples and microvasculatures of a mouse ear are successfully obtained with high-resolution and wide-field of view. OR-PAM equipped with the 2-axis PDMS based waterproof scanner has lateral and axial resolutions of 3.6 μm and 26 μm, respectively. This compact OR-PAM system could potentially and widely be used in preclinical and clinical applications. © 2015 by the authors; licensee MDPI, Basel, Switzerland.111513Ysciescopu

    Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor

    Get PDF
    We developed step edge decoration method for the fabrication of semiconductor ZnO nanodots and nanowires using pulsed laser deposition. We synthesized high quality ZnO nanowires with the small diameter of about 20 nm and the uniform interval of about 80 nm between each nanowire, which has a simple structure for the formation of contact electrodes. The ZnO nanowire-based sensor was prepared only with the simple process of a gold electrode formation. The ZnO nanowire-based sensor exhibited the high surface-to-volume ratio of 58.6 mu m(-1) and the significantly high sensitivity of about 10 even for the low ethanol concentration of 0.2 ppm.open115860sciescopu

    Verilog Modeling of Transmission Line for USB 2.0 High-Speed PHY Interface

    Get PDF
    A Verilog model is proposed for transmission lines to perform the all-Verilog simulation of high-speed chip-to-chip interface system, which reduces the simulation time by around 770 times compared to the mixed-mode simulation. The single-pulse response of transmission line in SPICE model is converted into that in Verilog model by converting the full-scale analog signal into an 11-bit digital code after uniform time sampling. The receiver waveform of transmission line is calculated by adding or subtracting the single-pulse response in Verilog model depending on the transmitting digital code values with appropriate time delay. The application of this work to a USB 2.0 high-speed PHY interface reduces the simulation time to less than three minutes with error less than 5% while the mixed-mode simulation takes more than two days for the same circuit.X1133Ysciescopu

    Evaluation of 3D printed PCL/PLGA/beta-TCP versus collagen membranes for guided bone regeneration in a beagle implant model

    Get PDF
    Here, we compared 3D-printed polycaprolactone/poly(lactic-co-glycolic acid)/beta-tricalcium phosphate (PCL/PLGA/beta-TCP) membranes with the widely used collagen membranes for guided bone regeneration (GBR) in beagle implant models. For mechanical property comparison in dry and wet conditions and cytocompatibility determination, we analyzed the rate and pattern of cell proliferation of seeded fibroblasts and preosteoblasts using the cell counting kit-8 assay and scanning electron microscopy. Osteogenic differentiation was verified using alizarin red S staining. At 8 weeks following implantation in vivo using beagle dogs, computed tomography and histological analyses were performed after sacrifice. Cell proliferation rates in vitro indicated that early cell attachment was higher in collagen than in PCL/PLGA/beta-TCP membranes; however, the difference subsided by day 7. Similar outcomes were found for osteogenic differentiation, with approximately 2.5 times greater staining in collagen than PCL/PLGA/beta-TCP, but without significant difference by day 14. In vivo, bone regeneration in the defect area, represented by new bone formation and bone-to-implant contact, paralleled those associated with collagen membranes. However, tensile testing revealed that whereas the PCL/PLGA/beta-TCP membrane mechanical properties were conserved in both wet and dry states, the tensile property of collagen was reduced by 99% under wet conditions. Our results demonstrate in vitro and in vivo that PCL/PLGA/beta-TCP membranes have similar levels of biocompatibility and bone regeneration as collagen membranes. In particular, considering that GBR is always applied to a wet environment (e.g. blood, saliva), we demonstrated that PCL/PLGA/beta-TCP membranes maintained their form more reliably than collagen membranes in a wet setting, confirming their appropriateness as a GBR membrane.11109Ysciescopu

    Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution

    Get PDF
    Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system

    Jet production in charged current deep inelastic e⁺p scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS

    Detection of viral respiratory pathogens in mild and severe acute respiratory infections in Singapore.

    Get PDF
    To investigate the performance of laboratory methods and clinical case definitions in detecting the viral pathogens for acute respiratory infections (ARIs) from a prospective community cohort and hospital inpatients, nasopharyngeal swabs from cohort members reporting ARIs (community-ARI) and inpatients admitted with ARIs (inpatient-ARI) were tested by Singleplex Real Time-Polymerase Chain Reaction (SRT-PCR), multiplex RT-PCR (MRT-PCR) and pathogen-chip system (PathChip) between April 2012 and December 2013. Community-ARI and inpatient-ARI was also combined with mild and severe cases of influenza from a historical prospective study as mild-ARI and severe-ARI respectively to evaluate the performance of clinical case definitions. We analysed 130 community-ARI and 140 inpatient-ARI episodes (5 inpatient-ARI excluded because multiple pathogens were detected), involving 138 and 207 samples respectively. Detection by PCR declined with days post-onset for influenza virus; decrease was faster for community-ARI than for inpatient-ARI. No such patterns were observed for non-influenza respiratory virus infections. PathChip added substantially to viruses detected for community-ARI only. Clinical case definitions discriminated influenza from other mild-ARI but performed poorly for severe-ARI and for older participants. Rational strategies for diagnosis and surveillance of influenza and other respiratory virus must acknowledge the differences between ARIs presenting in community and hospital settings

    The dependence of dijet production on photon virtuality in ep collisions at HERA

    Get PDF
    The dependence of dijet production on the virtuality of the exchanged photon, Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 < 2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb^-1. Dijet cross sections were measured for jets with transverse energy E_T^jet > 7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon momentum entering the hard process, was used to enhance the sensitivity of the measurement to the photon structure. The Q^2 dependence of the ratio of low- to high-xg^obs events was measured. Next-to-leading-order QCD predictions were found to generally underestimate the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models based on leading-logarithmic parton-showers, using a partonic structure for the photon which falls smoothly with increasing Q^2, provide a qualitative description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
    corecore