7 research outputs found

    Development and Validation of Control Algorithm for Variable Speed Fixed Pitch Small Wind Turbine

    No full text
    In this study, a power control algorithm of a variable-speed fixed-pitch horizontal-axis lift-type 20 kW small wind turbine (SWT) was proposed and verified through dynamic simulations. The power control algorithm proposed in this study consists of algorithms for Region II to track the maximum power coefficient, for Region II-1/2 to maintain the rated rotor speed, and for Region III to maintain the rated power. To verify the proposed power control algorithm, simulations were performed at the rated wind speed and above the rated wind speed, to which turbulence intensity based on the IEC regulation’s normal turbulence model was applied. As a result, it was confirmed that the proposed controller operates properly in the whole three regions including Regions II, II-1/2, and III. The controller performance was then compared with the variable-speed variable-pitch power controller. Although the performance of the proposed controller was considered good for the target VSVP wind turbine, it was lower than that of the conventional controller applied to the same wind turbine. Compared to the VSVP wind turbine, the VSFP wind turbine with the proposed controller was found to have higher mean loads on the blade and the tower but the fatigue loads in terms of Damage Equivalent Load (DEL) were found to be reduced

    Novel plasma-polymerized coating facilitates HeLa cell spheroid formation, exerting necroptosis via β-cyclodextrin-encapsulated resveratrol

    No full text
    Abstract Beta-cyclodextrins (β-CDs) comprise a pore for accommodating resveratrol (Res), thereby boosting its bioavailability. Res-incorporated β -CD (Res/CD) may be cytotoxic against both normal and cancer cells. Herein, we examined whether Res/CD exhibits anticancer activity against tumor spheroids, similar to in vivo tumor mass. To prepare three-dimensional spheroids, 1,1,1,3,5,7,7,7 octamethyl-3,5-bis(trimethylsiloxyl) tetrasiloxane (OMBTSTS) was deposited to the surface of the culture dish via plasma polymerization. We observed that HeLa cells grew as spheroids on the OMBTSTS-deposited surface at 20 W plasma power. Res/CD was delivered to the hypoxic core of the spheroid, inducing necrosis, whereas Res was not. Consistently, 10 μM Res alone was not cytotoxic to two-dimensional HeLa cells grown on a culture dish and three-dimensional spheroids. However, Res/CD promoted the necroptosis of spheroids, which were split into small fragments, ultimately inducing cell spheroid death. Collectively, our data suggest that nontoxic levels of Res/CD were efficiently delivered to the hypoxic core of tumor spheroids, promoting cell death. Therefore, Res/CD can be used as an effective anticancer drug. Moreover, the plasma-polymerized OMBTSTS modification technique provides insights into the efficient formation of spheroids in various cancer cell lines

    PMP: Learning to Physically Interact with Environments using Part-wise Motion Priors

    Full text link
    We present a method to animate a character incorporating multiple part-wise motion priors (PMP). While previous works allow creating realistic articulated motions from reference data, the range of motion is largely limited by the available samples. Especially for the interaction-rich scenarios, it is impractical to attempt acquiring every possible interacting motion, as the combination of physical parameters increases exponentially. The proposed PMP allows us to assemble multiple part skills to animate a character, creating a diverse set of motions with different combinations of existing data. In our pipeline, we can train an agent with a wide range of part-wise priors. Therefore, each body part can obtain a kinematic insight of the style from the motion captures, or at the same time extract dynamics-related information from the additional part-specific simulation. For example, we can first train a general interaction skill, e.g. grasping, only for the dexterous part, and then combine the expert trajectories from the pre-trained agent with the kinematic priors of other limbs. Eventually, our whole-body agent learns a novel physical interaction skill even with the absence of the object trajectories in the reference motion sequence.Comment: 13 pages, 11 figure
    corecore