168 research outputs found

    Bridging the gap between epigenetics research and nutritional public health interventions

    Get PDF
    Epigenetic processes, primarily DNA methylation and covalent modifications of histones, regulate the transcriptional activity of genes in a manner that can be modified by environmental cues. This allows variation in the expression of the transcriptome without changes in the genome. Constraint in the early life environment, such as poor early nutrition, is associated with increased risk of non-communicable diseases, including cardio-metabolic disease and cancer in later life. Such induced phenotypic change involves environmental signals acting through developmental plasticity. Recent studies in humans and in animal models show that epigenetic processes, in particular DNA methylation, have a central role in the induction and stability of novel phenotypes and in increased disease risk. Identification of such processes suggests the potential for developing biomarkers of disease risk and for interventions to prevent or reverse the adverse effects of a poor early life environment. At present, knowledge in this area is limited to proof-of-principle studies in animal models and some initial studies in humans. Before such findings can be translated into reliable biomarkers and safe, effective interventions, several fundamental questions need to be answered. In order to achieve this, new technologies will be needed to support large cohort studies. Despite the early stage of knowledge in this field and the intellectual, technological and financial challenges, epigenetic research has substantial potential for public health benefits

    Fetal programming and epigenetics

    Get PDF
    Accumulating evidence suggests that the intrauterine environment can have an impact on long-term offspring health, so-called �fetal programming�. A number of environmental stressors have been studied in humans including maternal nutrition, smoking, substance misuse and mental illness. Although various biological mechanisms are likely to underpin fetal programming effects, there has been a particular focus on epigenetic modifications as potential mediators of observed associations between early environmental exposures and later health outcomes. In this review, we give an overview of evidence supporting a role for epigenetics in fetal programming, highlighting key human and animal studies. We also discuss challenges for research in this area, along with recommendations for future work, and potential therapeutic applications

    Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study

    No full text
    The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was MCF10A 75 (70 up-regulated), MCF7 24 (14 up-regulated) and Hs578T 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion the differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC

    Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life?

    No full text
    There is considerable evidence for the induction of different phenotypes by variations in the early life environment, including nutrition, which in man is associated with a graded risk of metabolic disease; fetal programming. It is likely that the induction of persistent changes to tissue structure and function by differences in the early life environment involves life-long alterations to the regulation of gene transcription. This view is supported by both studies of human subjects and animal models. The mechanism which underlies such changes to gene expression is now beginning to be understood. In the present review we discuss the role of changes in the epigenetic regulation of transcription, specifically DNA methylation and covalent modification of histones, in the induction of an altered phenotype by nutritional constraint in early life. The demonstration of altered epigenetic regulation of genes in phenotype induction suggests the possibility of interventions to modify long-term disease risk associated with unbalanced nutrition in early life

    Fat and carbohydrate intake over three generations modify growth, metabolism and cardiovascular phenotype in female mice in an age-related manner

    No full text
    Environmental challenges such as a high fat diet during pregnancy can induce changes in offspring growth, metabolism and cardiovascular function. However, challenges that are sustained over several generations can induce progressive compensatory metabolic adjustments in young adults. It is not known if such effects persist during ageing. We investigated whether diets with different fat and carbohydrate contents over three generations modifies markers of ageing. Female C57BL/6 F0 mice were fed diets containing 5% or 21% fat (w/w) throughout pregnancy and lactation. Female offspring were fed the same diet as their dams until the F3 generation. In each generation, body weight, 24-hour food intake were recorded weekly, and plasma metabolites were measured by colorimetric assays, blood pressure by tail cuff plethysmography and vasoconstriction by myography on postnatal day 90 or 456. There was little effect of diet or generation on phenotypic markers in day 90 adults. There was a significant increase in whole body, liver and heart weight with ageing (d456) in the F3 21% fat group compared to the F1 and F3 5% groups. Fasting plasma glucose concentration was significantly increased with ageing in the 5% group in the F3 generation and in the 21% group in both generations. There was a significant effect of diet and generation on ex-vivo vasoconstriction in ageing females. Differences in dietary fat may induce metabolic compensation in young adults that persist over three generations. However, such compensatory effects decline during ageing

    Polyunsaturated fatty acid biosynthesis is involved in phenylephrine-mediated calcium release in vascular smooth muscle cells

    No full text
    Stimulation of vascular smooth muscle (VSM) ?1-adrenoceptors induces myosin phosphorylation and vasoconstriction via mobilisation of intracellular calcium and production of specific eicosanoids. Polyunsaturated fatty acid (PUFA) biosynthesis in VSM cells is involved, although the precise mechanism is not known. To address this, we characterised PUFA biosynthesis in VSM cells and determined its role in intracellular calcium release and eicosanoid production. Murine VSM cells converted 18:2n-6 to longer chain PUFA including 22:5n-6. ?6 (D6d) and ?5 (D5d) desaturase, and elongase (Elovl) 5 were expressed. Elovl2 was not detected in human, mouse or rat VSM cells, or in rat or mouse aortae, but tit was not associated with hypermethylation of its promoter. D6d or D5d inhibition reduced 18:3n-6 and 20:4n-6 synthesis, respectively, and induced concentration-related decrease in phenylephrine-mediated calcium release, and in PGE2 and PGF2? secretion. Together these findings suggest that PUFA biosynthesis in VSM cells is involved in calcium release associated with vasoconstriction

    Differential pathways to adult metabolic dysfunction following poor nutrition at two critical developmental periods in sheep

    No full text
    Epidemiological and experimental studies suggest early nutrition has long-term effects on susceptibility to obesity, cardiovascular and metabolic diseases. Small and large animal models confirm the influence of different windows of sensitivity, from fetal to early postnatal life, on offspring phenotype. We showed previously that undernutrition in sheep either during the first month of gestation or immediately after weaning induces differential, sex-specific changes in adult metabolic and cardiovascular systems. The current study aims to determine metabolic and molecular changes that underlie differences in lipid and glucose metabolism induced by undernutrition during specific developmental periods in male and female sheep. Ewes received 100% (C) or 50% nutritional requirements (U) from 1–31 days gestation, and 100% thereafter. From weaning (12 weeks) to 25 weeks, offspring were then fed either ad libitum (CC, UC) or were undernourished (CU, UU) to reduce body weight to 85% of their individual target. From 25 weeks, all offspring were fed ad libitum. A cohort of late gestation fetuses were studied after receiving either 40% nutritional requirements (1–31 days gestation) or 50% nutritional requirements (104–127 days gestation). Post-weaning undernutrition increased in vivo insulin sensitivity, insulin receptor and glucose transporter 4 expression in muscle, and lowered hepatic methylation at the delta-like homolog 1/maternally expressed gene 3 imprinted cluster in adult females, but not males. Early gestational undernutrition induced lower hepatic expression of gluconeogenic factors in fetuses and reduced in vivo adipose tissue insulin sensitivity in adulthood. In males, undernutrition in early gestation increased adipose tissue lipid handling mechanisms (lipoprotein lipase, glucocorticoid receptor expression) and hepatic methylation within the imprinted control region of insulin-like growth factor 2 receptor in adulthood. Therefore, undernutrition during development induces changes in mechanisms of lipid and glucose metabolism which differ between tissues and sexes dependent on the period of nutritional restriction. Such changes may increase later life obesity and dyslipidaemia risk

    Fatty acid composition and metabolic partitioning of α-linolenic acid are contingent on life stage in human CD3+ T lymphocytes

    Get PDF
    IntroductionImmune function changes across the life course; the fetal immune system is characterised by tolerance while that of seniors is less able to respond effectively to antigens and is more pro-inflammatory than in younger adults. Lipids are involved centrally in immune function but there is limited information about how T cell lipid metabolism changes during the life course.Methods and ResultsWe investigated whether life stage alters fatty acid composition, lipid droplet content and α-linolenic acid (18:3ω-3) metabolism in human fetal CD3+ T lymphocytes and in CD3+ T lymphocytes from adults (median 41 years) and seniors (median 70 years). Quiescent fetal T cells had higher saturated (SFA), monounsaturated fatty acid (MUFA), and ω-6 polyunsaturated fatty acid (PUFA) contents than adults or seniors. Activation-induced changes in fatty acid composition differed between life stages. The principal metabolic fates of [13C]18:3ω-3 were constitutive hydroxyoctadecatrienoic acid synthesis and β-oxidation and carbon recycling into SFA and MUFA. These processes declined progressively across the life course. Longer chain ω-3 PUFA synthesis was a relatively minor metabolic fate of 18:3ω-3 at all life stages. Fetal and adult T lymphocytes had similar lipid droplet contents, which were lower than in T cells from seniors. Variation in the lipid droplet content of adult T cells accounted for 62% of the variation in mitogen-induced CD69 expression, but there was no significant relationship in fetal cells or lymphocytes from seniors.DiscussionTogether these findings show that fatty acid metabolism in human T lymphocytes changes across the life course in a manner that may facilitate the adaptation of immune function to different life stages
    • …
    corecore