59 research outputs found

    The Onset of Anisotropic Transport of Two-Dimensional Electrons in High Landau Levels: An Isotropic-to-Nematic Liquid Crystal Phase Transition?

    Get PDF
    The recently discovered anisotropy of the longitudinal resistance of two-dimensional electrons near half filling of high Landau levels is found to persist to much higher temperatures T when a large in-plane magnetic field B|| is applied. Under these conditions we find that the longitudinal resistivity scales quasi-linearly with B||/T. These observations support the notion that the onset of anisotropy at B||=0 does not reflect the spontaneous development of charge density modulations but may instead signal an isotropic-to-nematic liquid crystal phase transition.Comment: 5 pages, 4 figure

    Magnetoroton instabilities and static susceptibilities in higher Landau levels

    Get PDF
    We present analytical results concerning the magneto-roton instability in higher Landau levels evaluated in the single mode approximation. The roton gap appears at a finite wave vector, which is approximately independent of the LL index n, in agreement with numerical calculations in the composite-fermion picture. However, a large maximum in the static susceptibility indicates a charge density modulation with wave vectors q0(n)∼1/2n+1q_0(n)\sim 1/\sqrt{2n+1}, as expected from Hartree-Fock predictions. We thus obtain a unified description of the leading charge instabilities in all LLs.Comment: 4 pages, 5 figure

    Stripes in Quantum Hall Double Layer Systems

    Full text link
    We present results of a study of double layer quantum Hall systems in which each layer has a high-index Landau level that is half-filled. Hartree-Fock calculations indicate that, above a critical layer separation, the system becomes unstable to the formation of a unidirectional coherent charge density wave (UCCDW), which is related to stripe states in single layer systems. The UCCDW state supports a quantized Hall effect when there is tunneling between layers, and is {\it always} stable against formation of an isotropic Wigner crystal for Landau indices N≥1N \ge 1. The state does become unstable to the formation of modulations within the stripes at large enough layer separation. The UCCDW state supports low-energy modes associated with interlayer coherence. The coherence allows the formation of charged soliton excitations, which become gapless in the limit of vanishing tunneling. We argue that this may result in a novel {\it ``critical Hall state''}, characterized by a power law I−VI-V in tunneling experiments.Comment: 10 pages, 8 figures include

    Competition between quantum-liquid and electron-solid phases in intermediate Landau levels

    Full text link
    On the basis of energy calculations we investigate the competition between quantum-liquid and electron-solid phases in the Landau levels n=1,2, and 3 as a function of their partial filling factor. Whereas the quantum-liquid phases are stable only in the vicinity of quantized values 1/(2s+1) of the partial filling factor, an electron solid in the form of a triangular lattice of clusters with a few number of electrons (bubble phase) is energetically favorable between these fillings. This alternation of electron-solid phases, which are insulating because they are pinned by the residual impurities in the sample, and quantum liquids displaying the fractional quantum Hall effect explains a recently observed reentrance of the integral quantum Hall effect in the Landau levels n=1 and 2. Around half-filling of the last Landau level, a uni-directional charge density wave (stripe phase) has a lower energy than the bubble phase.Comment: 12 pages, 9 figures; calculation of exact exchange potential for n=1,2,3 included, energies of electron-solid phases now calculated with the help of the exact potential, and discussion of approximation include

    Theory of the Quantum Hall Smectic Phase II: Microscopic Theory

    Full text link
    We present a microscopic derivation of the hydrodynamic theory of the Quantum Hall smectic or stripe phase of a two-dimensional electron gas in a large magnetic field. The effective action of the low energy is derived here from a microscopic picture by integrating out high energy excitations with a scale of the order the cyclotron energy.The remaining low-energy theory can be expressed in terms of two canonically conjugate sets of degrees of freedom: the displacement field, that describes the fluctuations of the shapes of the stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and improved Introduction. Final version as it will appear in Physical Review

    Anisotropic transport in unidirectional lateral superlattice around half-filling of the second Landau level

    Full text link
    We have observed marked transport anisotropy in short period (a=92 nm) unidirectional lateral superlattices around filling factors nu=5/2 and 7/2: magnetoresistance shows a sharp peak for current along the modulation grating while a dip appears for current across the grating. By altering the ratio a/l (with l=sqrt{hbar/eB_perp} the magnetic length) via changing the electron density n_e, it is shown that the nu=5/2 anisotropic features appear in the range 6.6 alt a/l alt 7.2 varying their intensities, becoming most conspicuous at a/l simeq 6.7. The peak/dip broadens with temperature roughly preserving its height/depth up to 250 mK. Tilt experiments reveal that the structures are slightly enhanced by an in-plane magnetic field B_| perpendicular to the grating but are almost completely destroyed by B_| parallel to the grating. The observations suggest the stabilization of a unidirectional charge-density-wave or stripe phase by weak external periodic modulation at the second Landau level.Comment: REVTeX, 5 pages, 3 figures, Some minor revisions, Added notes and reference

    Dynamics of quantum Hall stripes in double-quantum-well systems

    Full text link
    The collective modes of stripes in double layer quantum Hall systems are computed using the time-dependent Hartree-Fock approximation. It is found that, when the system possesses spontaneous interlayer coherence, there are two gapless modes, one a phonon associated with broken translational invariance, the other a pseudospin-wave associated with a broken U(1) symmetry. For large layer separations the modes disperse weakly for wavevectors perpendicular to the stripe orientation, indicating the system becomes akin to an array of weakly coupled one-dimensional XY systems. At higher wavevectors the collective modes develop a roton minimum associated with a transition out of the coherent state with further increasing layer separation. A spin wave model of the system is developed, and it is shown that the collective modes may be described as those of a system with helimagnetic ordering.Comment: 16 pages including 7 postscript figure

    Quantum Hall ferromagnets, cooperative transport anisotropy, and the random field Ising model

    Get PDF
    We discuss the behaviour of a quantum Hall system when two Landau levels with opposite spin and combined filling factor near unity are brought into energetic coincidence using an in-plane component of magnetic field. We focus on the interpretation of recent experiments under these conditions [Zeitler et al, Phys. Rev. Lett. 86, 866 (2001); Pan et al, Phys. Rev. B 64, 121305 (2001)], in which a large resistance anisotropy develops at low temperatures. Modelling the systems involved as Ising quantum Hall ferromagnets, we suggest that this transport anisotropy reflects domain formation induced by a random field arising from isotropic sample surface roughness.Comment: 4 pages, submitted to Physical Review

    Structures for Interacting Composite Fermions: Stripes, Bubbles, and Fractional Quantum Hall Effect

    Full text link
    Much of the present day qualitative phenomenology of the fractional quantum Hall effect can be understood by neglecting the interactions between composite fermions altogether. For example the fractional quantum Hall effect at ν=n/(2pn±1)\nu=n/(2pn\pm 1) corresponds to filled composite-fermion Landau levels,and the compressible state at ν=1/2p\nu=1/2p to the Fermi sea of composite fermions. Away from these filling factors, the residual interactions between composite fermions will determine the nature of the ground state. In this article, a model is constructed for the residual interaction between composite fermions, and various possible states are considered in a variational approach. Our study suggests formation of composite-fermion stripes, bubble crystals, as well as fractional quantum Hall states for appropriate situations.Comment: 16 pages, 7 figure

    Analytical approach to bit-string models of language evolution

    Full text link
    A formulation of bit-string models of language evolution, based on differential equations for the population speaking each language, is introduced and preliminarily studied. Connections with replicator dynamics and diffusion processes are pointed out. The stability of the dominance state, where most of the population speaks a single language, is analyzed within a mean-field-like approximation, while the homogeneous state, where the population is evenly distributed among languages, can be exactly studied. This analysis discloses the existence of a bistability region, where dominance coexists with homogeneity as possible asymptotic states. Numerical resolution of the differential system validates these findings.Comment: To appear in Int. J. Mod. Phys.
    • …
    corecore