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Quantum Hall ferromagnets, cooperative transport anisotropy, and the random field Ising model
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We discuss the behavior of a quantum Hall system when two Landau levels with opposite spins and
combined filling factor near unity are brought into energetic coincidence using an in-plane component of
magnetic field. We focus on the interpretation of recent experiments under these conditions@Zeitler et al.,
Phys. Rev. Lett.86, 866 ~2001!; Pan et al., Phys. Rev. B64, 121305~2001!#, in which a large resistance
anisotropy develops at low temperatures. Modeling the systems involved as Ising quantum Hall ferromagnets,
we suggest that this transport anisotropy reflects domain formation induced by a random field arising from
isotropic sample surface roughness.
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Two very striking experimental observations of large ele
tronic transport anisotropy for quantum Hall systems in tilt
magnetic fields have been reported recently.1,2 In both cases,
anisotropy appears at integer values of the filling factorn,
with an in-plane magnetic-field component tuned to br
two Landau levels of opposite spins into energetic coin
dence. While the in-plane magnetic-field component its
defines an axis within the sample, the fact that large ani
ropy appears in resistivity only below a characteristic te
perature of about 1 K suggests that it has a cooperative
gin. Our aim in this paper is to develop a theoretic
treatment of such systems and to discuss the source o
observed anisotropy.

In view of the phenomenological similarities, it is natur
to make comparisons between these Landau-level co
dence experiments and the earlier discovery of resistance
isotropy in quantum Hall systems near half filling of hig
Landau levels,3 attributed to the formation of a uniaxia
charge-density wave with a period set by the cyclotr
radius.4 Some distinctions are, however, clear. Most imp
tantly, the nature of the electron states near the chem
potential and their average occupation is quite different
each case: two separate orbital Landau levels with oppo
spins and a combined filling factor close to unity are
volved in the coincidence experiments, as against a sin
spin-polarized and roughly half filled Landau level in th
other case. In this context it is desirable to examine a ra
of possible explanations for low-temperature anisotropy.

The study of cooperative effects in coincident Landau l
els has a long history. Consider a system with fix
magnetic-field strengthB' perpendicular to the two
dimensional electron or hole gas, as a function of total fi
strengthBtot . In a single-particle description, there are pa
of Landau levels having opposite spin orientations and
bital quantum numbers differing byDN, which are separated
in energy byDN\vc2g* mBBtot , wherevc}B' is the cy-
clotron frequency andg* mBBtot is the Zeeman contribution
This energy gap falls to zero at coincidence. Inclusion
exchange interactions leads, at a combined filling factor
unity for the crossing levels, to a first-order transition b
tween two ground states in which one or other level is co
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pletely filled. Within a Hartree-Fock treatment, the excitati
gap remains nonzero through this transition.5 Early observa-
tions of a quantized plateau in Hall resistivityrxy and deep
minimum in diagonal resistivityrxx , both persisting through
the transition,6 provide support for such a picture, while me
surements of the temperature dependence ofrxx allow the
determination of an activation energy gap,7 which has the
variation with Bi expected theoretically. This Landau-lev
coincidence transition is one example of a broad class
cooperative phenomena in quantum Hall systems, involv
ferromagnetism of either spin or pseudospin variables, wh
have been a focus for much recent work.8,9 From such a
perspective, representing the two Landau levels involved
ing two states of a pseudospin, interactions between p
dospins are ferromagnetic with Ising anisotropy,10 while Btot

measured from its value at coincidence acts on pseudos
as a Zeeman field.

With this background in mind, we return to a discussi
of transport anisotropy. Following the suggestions of Refs
and 2, it is clear that the presence of a spin or charge den
wave could potentially explain this observation. From t
original Hartree-Fock calculations,5 which were for a one-
band model and, considered only trial states with homo
neous charge density, it was found that instability to a sp
density wave is preempted by the first-order coinciden
transition. An escape from this conclusion might be provid
by the fact that the sample involved in one experiment i
Si/GeSi heterostructure1 and in the other a wide quantum
well;2 the former has valley degeneracy and the latter
two occupied subbands. Alternatively, it might be that a b
ter trial state in the Hartree-Fock theory, or calculations t
go beyond this approximation, would yield a stripe phase
the true ground state near coincidence. However, rec
Hartree-Fock calculations for bilayer systems11 give only fer-
romagnetic pseudospin order with parameters relevant in
present context, as do calculations for one-band models
which the Hartree-Fock solutions with both spin- and char
density modulations are considered,12 or the Hamiltonian
with realistic interaction potentials is diagonalized exac
for a small number of electrons.13
©2002 The American Physical Society17-1



t
o

ze
t

d
do
ro
a
o

ns
o
ve

a
ro
pe
th
e
1
d

n
ng

th

ha

r
le
l

e
-

h

th
o

d
o

ts,
io
b

r i
-

e

e

s,
nit
to
er-

is

ro-
at

uce
-
ia
ion.
ess

nt,

ss

ell

the
f

ld
iate
is

now

an

en

s
n

py,

si-
nd

s-
in
le
d
g

RAPID COMMUNICATIONS
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The observations of Refs. 1 and 2 therefore presen
puzzle, which, we argue in the following, can be understo
in terms of domain formation, with a characteristic si
much larger than the relevant scale for stripe phases,
cyclotron radius. Our account involves three distinct ingre
ents. First, we suggest that domains are induced by a ran
Zeeman field acting on the pseudospins, which arises f
the interplay between isotropic sample surface roughness
the in-plane component of magnetic field. Second, we sh
that a random field generated by this mechanism is intri
cally endowed with anisotropic correlations, and that the c
relation anisotropy is large enough to explain the obser
anisotropy in resistivity. Third, we argue that transport in
multidomain sample occurs along domains walls via the p
cesses discussed recently in Refs. 14–16. The onset tem
ture for transport anisotropy arising by this mechanism is
Curie temperature of the Ising quantum Hall ferromagn
and we note that the reported1,2 onset temperature of about
K is similar to the value for the Curie temperature expecte10

and the value observed elsewhere.17

As a starting point for a more detailed discussion, co
sider an energy functional for the system. Introduci
coherent-state creation operatorsc↑

†(r ) andc↓
†(r … for the two

Landau levels involved, correlations are characterized by
expectation value of pseudospin,S(r )5^ca

†sabcb&, where
s is the vector of Pauli matrices. The order parameter
magnitudeuS(r )u5S, whereS51 at a combined filling fac-
tor of unity for the two Landau levels and is smaller othe
wise. For variations ofS(r ), which are smooth on the sca
of the cyclotron radius, one expects the energy functiona
have the form

E5E ~2DSz
21Ju¹Su21dJu]nS~r !u22hSz!d

2r . ~1!

HereD.0 represents Ising anisotropy,J is the spin stiffness,
the derivative]n[n̂•“ acts in the direction of the in-plan
magnetic field, denoted byn̂, anddJ represents spatial an
isotropy in the spin stiffness~for simplicity, we omit anisot-
ropy in spin space from the stiffness!. The effective Zeeman
field acting on pseudospins ish. In experiment, the strengt
of this field varies through zero as the tilt angleu of the
sample in the applied magnetic field is varied through
Landau-level coincidence point; its strength depends also
field magnitudeBtot and on carrier densityn.

For a homogeneous system, the ground state of Eq.~1! is
uniform with Sz5sgn(h)S and S'50. Domains may arise
either in metastable states or because they are induce
quenched disorder. While metastability and hysteresis are
served in some examples of quantum Hall ferromagne17

this is not reported to be an important aspect of observat
in Refs. 1 and 2. We therefore turn to domains induced
disorder. Potentially, the most important source of disorde
Eq. ~1! is randomness inh, and the behavior of the random
field Ising model has been studied very extensively.18 It is
useful to distinguish the weak and strong disorder regim
takingh to fluctuate about mean value zero with amplitudeD
and correlation lengthl, and supposingl to be greater than
the domain-wall widthw5AJ/D, the boundary between th
16131
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two regimes lies atlD;AJD. At weak disorder, domain size
j is much larger thanl and domain morphology depend
amongst other things, on the difference in energy per u
length of domain walls running parallel or perpendicular
the in-plane magnetic-field component. This energy diff
ence is of the orderAdJD. At strong disorder, which we
shall argue is the limit relevant here, the domain pattern
simply that of sgn(h).

To apply these ideas, it is necessary to identify a mic
scopic origin for such a random field. One possibility is th
variations in carrier densityn, arising either from impurity
scattering or from large-scale inhomogeneities, prod
changes in the value ofh. Randomness of this kind is spa
tially isotropic, but may give rise to transport anisotropy v
dependence of the domain-wall energy on spatial orientat
A second possibility is that sample surface roughn
changes the local value ofu, and henceh. To compare the
likely importance of these two, we appeal to experime
noting ~for example, from Fig. 2 of Ref. 1! that while the
coincidence transition has a rather small width (0.5°) inu, it
has a much larger width~20%! in Btot , which is indicative of
its width in n. The existence of sample surface roughne
with an amplitude of a few nonometers andl;1mm is re-
ported in Ref. 1 and amplitudes of up to 10 nm are w
established in a variety of other contexts,19 giving gradients
of at least a few tenths of a degree. We estimate that
condition lD;AJD is met by surface height fluctuations o
order cot(uc)e

2/e\vc , and conclude that the random fie
originating from surface roughness constitutes intermed
or strong disorder. Moreover, domain formation by th
mechanism can account for transport anisotropy, as we
show.

Let z(r ) denote height of the sample surface above
average reference plane, and letuc be the critical angle at
which the Landau-level coincidence transition occurs. Th
for small-angle roughness,

h~r !5a~u2uc!1a]nz~r !, ~2!

where a is a proportionality constant. Crucially, by thi
mechanism, surface roughness with a correlation functio

C~r !5^z~r 8!z~r1r 8!&2^z~r 8!&^z~r1r 8!&, ~3!

which is isotropic, generates a random field withspatially
anisotropic correlations, since

^h~r 8!h~r1r 8!&2^h~r 8!&^h~r1r 8!&52a2]n
2C~r !.

~4!
To establish the characteristic degree of this anisotro

we have carried out numerical simulations. Takingz(r ) to be
a superposition of overlapping Gaussian functions of po
tion, with centers placed at random points in the plane a
amplitudes distributed uniformly about zero, and settingu
5uc , the resulting random fieldh(r ) in a typical realization
is illustrated in Fig. 1. Anticipating our discussion of tran
port on domain walls, we quantify the anisotropy evident
this figure by following the classical dynamics of a partic
that moves along contours ofh(r ), using methods describe
previously.20 Averaging over randomly placed startin
7-2
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points, we expect diffusive motion in the sense that me
square displacements grow linearly in time. Takingn̂ parallel
to the y axis, the quantitiesDxx(t)[^x2(t)&/t and Dyy(t)
[^y2(t)&/t should then approach the eigenvaluesDxx and
Dyy of the diffusion tensor, for timest that are large com-
pared to the correlation timet0. Evidence thatDxx(t) and
Dyy(t) indeed tend to a finite limit, withDxx;8Dyy , is pre-
sented in Fig. 2. The orientation of this anisotropy, with t
larger diffusion constant in the direction perpendicular to
in-plane magnetic-field component, is as observed in R
1,2, and its magnitude is about the same as that determin
low temperature using a Hall bar sample.1 The precise value
of Dxx /Dyy will be dependent on the disorder distributio
but we see no reason to expect large variations. Our calc
tions also provide an opportunity to test the universality cl
of our anisotropic percolation problem, since diffusi

FIG. 1. Gray scale plots of~upper panel! spatially isotropic sur-
face roughnessz(r ) and ~lower panel! the spatially anisotropic
Ising-model random field]nz(r ) that results from this surface
roughness.

FIG. 2. Simulation data used to determine diffusion coeffici
anisotropy. Mean-square displacements per unit time in direct
perpendicular@Dxx(t), full line# and parallel@Dyy(t), dashed line#

to the in-plane field directionn̂ are shown, averaged over all traje
tories. Inset shows the averages over open trajectories o
^x2(t)&/t8/7 and ^y2(t)&/t8/7, demonstrating scaling with the class
cal percolation exponent value.
16131
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growth in the mean-square displacement arises at long ti
from a balance between bounded motion on closed traje
ries and super diffusive motion on trajectories that rem
open up to the observation time.21 Averaging only over open
trajectories, one expects^x2(t)&}^y2(t)&}t8/7, if the aniso-
tropic problem is in the same universality class as the s
dard classical percolation problem; data shown in the inse
Fig. 2 support this conclusion.

The foregoing discussion is based on the idea that tra
port occurs along boundaries between domains. In orde
substantiate this, we next examine transport properties of
main walls between oppositely magnetized phases of
Ising quantum Hall ferromagnet. Recalling that the dom
wall forms the boundary between a region on one side w
filling factors for the coincident Landau levels ofn↑.1 and
n↓.0, and a region on the other with interchanged fillin
factors,n↑.0 andn↓.1, the simplest structure one migh
imagine is that shown in Fig. 3~a!. In this picture, the wall
supports two counterpropagating modes with opposite s
polarizations, which arise as edge states of the occupied L
dau levels in the domains on either side. Such an Ising
main wall, in whichS'(r )50 everywhere andS(r )50 at
the wall center, may be stabilized by short-range scatter
which allows solutions withuS(r )u,1,22 in contrast to Eq.
~1!. For a sample without short-range scattering, howev
Hartree-Fock theory yields16 the Bloch domain-wall struc-
ture shown in Fig. 3~b!. Here,S'(r )5” 0 on the wall. Conse-
quently, within Hartree-Fock theory there is mixing and
avoided crossing of edge states arising from occupied L
dau levels on either side of the wall.

At this level of approximation, for a Bloch wall the
chemical potential lies within a quasiparticle gap. To acco
for transport under these conditions, it is necessary to c

t
s

ly,

FIG. 3. Schematic summary of domain-wall structure, show
pseudospin and excitation energiesE, as a function of the positiony
across the wall, within the Hartree-Fock theory;~a! for an Ising wall
stabilized by short-range scattering, and~b! for a Bloch wall.
7-3
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sider collective excitations. The combined consequence
continuous symmetry for the Hartree-Fock solution un
rotations of^S'(r )& about the Ising axis, and the connectio
between spin or pseudospin and charge that is standar
quantum Hall ferromagnets,8 have been examined in a re
lated context in Ref. 15. Introducing pseudospin rotat
anglew as a function of position coordinatex along the wall
and imaginary timet, the action

S5
r

2E E F S ]w

]x D 2

1
1

u2 S ]w

]t D 2Gdx dt ~5!

is obtained for domain-wall excitations,15 where in our con-
text r;Jw;e2/e and u;e2/e\. A charge density
(2p)21]w/]x is associated with these modes. This is t
action for a spinless Luttinger liquid. A vital property for ou
argument is that left- and right-moving excitations propag
independently, provided rotation symmetry about the ps
dospin easy axis is exact. In short, Fig. 3~a! remains a usefu
picture even without the short-range disorder to stabilize
Ising wall, provided only that there is no spin-orbit scatt
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ing. In this picture, transport in a multidomain sample occ
at domain boundaries, via two independent, counterpropa
ing sets of modes. Neglecting quantum interference effe
we arrive at the problem for which numerical results a
given above.

In conclusion, we have argued that the observations
anisotropic transport reported in Refs. 1 and 2 can plaus
be attributed to the formation of anisotropically shaped d
mains, induced as a result of sample surface roughness.
numerical work demonstrates that this mechanism gener
an anisotropy comparable to that found experimentally.1 In
addition, the onset temperature for strongly anisotropic tra
port is comparable to the critical temperature expected10 and
observed17 in other Ising quantum Hall ferromagnets. F
future work, it would be interesting to investigate transp
in systems with deliberately induced surface features.
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