2,390 research outputs found
Efficient dynamic simulation for multiple chain robotic mechanisms
An efficient O(mN) algorithm for dynamic simulation of simple closed-chain robotic mechanisms is presented, where m is the number of chains, and N is the number of degrees of freedom for each chain. It is based on computation of the operational space inertia matrix (6 x 6) for each chain as seen by the body, load, or object. Also, computation of the chain dynamics, when opened at one end, is required, and the most efficient algorithm is used for this purpose. Parallel implementation of the dynamics for each chain results in an O(N) + O(log sub 2 m+1) algorithm
Reforming the Unreformable: The Peace Corps, Neocolonialism, and the White Savior Complex
The Peace Corps has existed since the 1960s, and its goals – “to help the people of interested countries in meeting their need for trained men and women, to help promote a better understanding of Americans on the part of the peoples served, and to help promote a better understanding of other peoples on the part of Americans” – have remained unchanged since that time. Because the United States’ government determines the funding of the organization, the Peace Corps cannot be fully independent of the country’s foreign policy. It must be examined critically to ensure that the work of the Peace Corps is ethical, as it is an extension of American soft power. This paper draws upon previous research about the history of the Peace Corps as well as the theories of neocolonialism and the white savior complex to argue that the organization needs serious reform. Using the framework of transformative justice, this paper recommends different ways in which the organization must be reformed to divorce itself from its neocolonialist legacy. The organization currently prioritizes surface-level change in host communities. If the Peace Corps’ ultimate aim is to create global equity, it must first make structural changes to its funding and leadership models and introduce the white savior complex and sustainable allyship into the training curriculum for its volunteers
The formation of glycocyamine in man and its urinary excretion
Glycocyamine was first isolated from human and dog urine and identified by Weber (1-3). He supported the view that glycocyamine is a normal precursor of creatine and that its appearance in urine (2) is “an overflow phenomenon of an intermediate metabolic product ...” He expressed no views on the mechanism of its formation
Simulation of guiding of multiply charged projectiles through insulating capillaries
Recent experiments have demonstrated that highly charged ions can be guided
through insulating nanocapillaries along the direction of the capillary axis
for a surprisingly wide range of injection angles. Even more surprisingly, the
transmitted particles remain predominantly in their initial charge state, thus
opening the pathway to the construction of novel ion-optical elements without
electric feedthroughs. We present a theoretical treatment of this
self-organized guiding process. We develop a classical trajectory transport
theory that relates the microscopic charge-up with macroscopic material
properties. Transmission coefficients, angular spread of transmitted particles,
and discharge characteristics of the target are investigated. Partial agreement
with experiment is found
Transplantation in children
Kidney transplantation in very young children, less than 2 years of age, has usually failed, mainly because of difficulties maintaining these patients on hemodialysis long enough to permit retransplantation after loss of the original graft. Liver replacement in the very young child has been associated with a higher frequency of vascular and biliary obstruction than in the older child, due to the small size of these structures. Such accidents have contributed to unsatisfactory results with biliary atresia. Transplantation of kidney or liver into older children has been more successful than transplantation of these organs into adults. Related or cadaveric kidney transplantation in the child has been followed by at least a 60 per cent patient survival for 6 to 13 years and a very acceptable quality of life. Liver replacement for diseases other than biliary atresia has been followed by a 56 per cent 1 year survival rate, and two children have survived for more than 5 years
The Onset of Anisotropic Transport of Two-Dimensional Electrons in High Landau Levels: An Isotropic-to-Nematic Liquid Crystal Phase Transition?
The recently discovered anisotropy of the longitudinal resistance of
two-dimensional electrons near half filling of high Landau levels is found to
persist to much higher temperatures T when a large in-plane magnetic field B||
is applied. Under these conditions we find that the longitudinal resistivity
scales quasi-linearly with B||/T. These observations support the notion that
the onset of anisotropy at B||=0 does not reflect the spontaneous development
of charge density modulations but may instead signal an isotropic-to-nematic
liquid crystal phase transition.Comment: 5 pages, 4 figure
New Physics in High Landau Levels
Recent magneto-transport experiments on ultra-high mobility 2D electron
systems in GaAs/AlGaAs heterostructures have revealed the existence of whole
new classes of correlated many-electron states in highly excited Landau levels.
These new states, which appear only at extremely low temperatures, are
distinctly different from the familiar fractional quantum Hall liquids of the
lowest Landau level. Prominent among the recent findings are the discoveries of
giant anisotropies in the resistivity near half filling of the third and higher
Landau levels and the observation of re- entrant integer quantum Hall states in
the flanks of these same levels. This contribution will survey the present
status of this emerging field.Comment: 8 pages, 9 figures. To be published in the Proceedings of the 13th
International Conference on the Electronic Properties of Two-Dimensional
System
Current Path Properties of the Transport Anisotropy at Filling Factor 9/2
To establish the presence and orientation of the proposed striped phase in
ultra-high mobility 2D electron systems at filling factor 9/2, current path
transport properties are determined by varying the separation and allignment of
current and voltage contacts. Contacts alligned orthogonal to the proposed
intrinsic striped phase produce voltages consistent with current spreading
along the stripes; current driven along the proposed stripe direction results
in voltages consistent with channeling along the stripes. Direct comparison is
made to current spreading/channeling properties of artificially induced 1D
charge modulated systems, which indicates the 9/2 direction.Comment: 10 pages, 4 figure
- …