26 research outputs found

    Evidence of co-exposure with Brucella spp, Coxiella burnetii, and Rift Valley fever virus among various species of wildlife in Kenya

    Get PDF
    Background Co-infection, especially with pathogens of dissimilar genetic makeup, may result in a more devastating impact on the host. Investigations on co-infection with neglected zoonotic pathogens in wildlife are necessary to inform appropriate prevention and control strategies to reduce disease burden in wildlife and the potential transmission of these pathogens between wildlife, livestock and humans. This study assessed co-exposure of various Kenyan wildflife species with Brucella spp, Coxiella burnetii and Rift Valley fever virus (RVFV). Methodology A total of 363 sera from 16 different wildlife species, most of them (92.6%) herbivores, were analysed by Enzyme-linked immunosorbent assay (ELISA) for IgG antibodies against Brucella spp, C. burnetii and RVFV. Further, 280 of these were tested by PCR to identify Brucella species. Results Of the 16 wildlife species tested, 15 (93.8%) were seropositive for at least one of the pathogens. Mean seropositivities were 18.9% (95% CI: 15.0–23.3) for RVFV, 13.7% (95% CI: 10.3–17.7) for Brucella spp and 9.1% (95% CI: 6.3–12.5) for C. burnetii. Buffaloes (n = 269) had higher seropositivity for Brucella spp. (17.1%, 95% CI: 13.0–21.7%) and RVFV (23.4%, 95% CI: 18.6–28.6%), while giraffes (n = 36) had the highest seropositivity for C. burnetii (44.4%, 95% CI: 27.9–61.9%). Importantly, 23 of the 93 (24.7%) animals positive for at least one pathogen were co-exposed, with 25.4% (18/71) of the positive buffaloes positive for brucellosis and RVFV. On molecular analysis, Brucella DNA was detected in 46 (19.5%, CI: 14.9–24.7) samples, with 4 (8.6%, 95% CI: 2.2–15.8) being identified as B. melitensis. The Fisher’s Exact test indicated that seropositivity varied significantly within the different animal families, with Brucella (p = 0.013), C. burnetii (p = <0.001) and RVFV (p = 0.007). Location was also significantly associated (p = <0.001) with Brucella spp. and C. burnetii seropositivities. Conclusion Of ~20% of Kenyan wildlife that are seropositive for Brucella spp, C. burnetii and RVFV, almost 25% indicate co-infections with the three pathogens, particularly with Brucella spp and RVFV

    Seroprevalence of Brucella spp. and Rift Valley fever virus among slaughterhouse workers in Isiolo County, northern Kenya

    Get PDF
    Brucella spp. and Rift Valley fever virus (RVFV) are classified as priority zoonotic agents in Kenya, based on their public health and socioeconomic impact on the country. Data on the pathogen-specific and co-exposure levels is scarce due to limited active surveillance. This study investigated seroprevalence and co-exposure of Brucella spp. and RVFV and associated risk factors among slaughterhouse workers in Isiolo County, northern Kenya. A cross-sectional serosurvey was done in all 19 slaughterhouses in Isiolo County, enrolling 378 participants into the study. The overall seroprevalences for Brucella spp. and RVFV were 40.2% (95% CI: 35.2–45.4) and 18.3% (95% CI: 14.5–22.5), respectively while 10.3% (95% CI 7.4%-13.8%) of individuals were positive for antibodies against both Brucella spp. and RVFV. Virus neutralisation tests (VNT) confirmed anti-RVFV antibodies in 85% of ELISA-positive samples. Our seroprevalence results were comparable to community-level seroprevalences previously reported in the area. Since most of the study participants were not from livestock-keeping households, our findings attribute most of the detected infections to occupational exposure. The high exposure levels indicate slaughterhouse workers are the most at-risk population and there is need for infection, prevention, and control programs among this high-risk group. This is the first VNT confirmation of virus-neutralising antibodies among slaughterhouse workers in Isiolo County and corroborates reports of the area being a high-risk RVFV area as occasioned by previously reported outbreaks. This necessitates sensitization campaigns to enhance awareness of the risks involved and appropriate mitigation measures

    Draft Genome Sequence of "Candidatus Phytoplasma oryzae" Strain Mbita1, the Causative Agent of Napier Grass Stunt Disease in Kenya.

    Get PDF
    Phytoplasmas are bacterial plant pathogens with devastating impact on agricultural production worldwide. In eastern Africa, Napier grass stunt disease causes serious economic losses in the smallholder dairy industry. This draft genome sequence of " ITALIC! CandidatusPhytoplasma oryzae" strain Mbita1 provides insight into its genomic organization and the molecular basis of pathogenicity

    Detection of species substitution in the meat value chain by high-resolution melting analysis of mitochondrial PCR products

    No full text
    Substituting high commercial-value meats with similar cheaper or undesirable species is a common form of food fraud that raises ethical, religious, and dietary concerns. Measures to monitor meat substitution are being put in place in many developed countries. However, information about similar efforts in sub-Saharan Africa is sparse. We used PCR coupled with high-resolution melting (PCR-HRM) analysis targeting three mitochondrial genes—cytochrome oxidase 1 (CO1), cytochrome b (cyt b), and 16S rRNA—to detect species substitution in meat sold to consumers in Nairobi, Kenya. Out of 107 meat samples representing seven livestock animals, 11 (10.3%) had been substituted, with the highest rate being observed in samples sold as goat. Our results indicate that PCR-HRM analysis is a cost- and time-effective technique that can be employed to detect species substitution. The combined use of the three mitochondrial markers produced PCR-HRM profiles that successfully allowed for the consistent distinction of species in the analysis of raw, cooked, dried, and rotten meat samples, as well as of meat admixtures. We propose that this approach has broad applications in the protection of consumers against food fraud in the meat industry in low- and middle-income countries such as Kenya, as well as in developed countries

    Prevalence of trypanosomes associated with drug resistance in Shimba Hills, Kwale County, Kenya

    No full text
    Objective Animal African trypanosomiasis (AAT) is a life-threatening vector-borne disease, caused by trypanosome parasites, which are principally transmitted by tsetse flies. In Kenya, the prevalence of drug-resistant trypanosomes in endemic regions remains poorly understood. The objective of this study was to establish AAT point prevalence, drug susceptibility of associated trypanosomes, and measure infectivity by multiple AAT mammalian hosts to tsetse flies in Shimba hills, a resource-poor region with high bovine trypanosomiasis prevalence and morbidity rates at the coast of Kenya. We collected tsetse flies using traps (1 Ngu and 2 biconical), and then sorted them on sex and species. Trypanosomes present in tsetse flies were detected by first extracting all genomic DNA, and then performing PCR reactions with established primers of the internal transcribed spacer regions. Polymorphisms associated with trypanocide resistance in the TbAT1 gene were also detected by performing PCR reactions with established primers. Results Our findings suggest low trypanosome prevalence (3.7%), low trypanocide resistance, and low infectivity by multiple mammalian hosts to tsetse flies in Shimba hills. We conclude that enhanced surveillance is crucial for informing disease management practices that help prevent the spread of drug-resistant trypanosomiasis

    Three-gene PCR and high-resolution melting analysis for differentiating vertebrate species mitochondrial DNA for biodiversity research and complementing forensic surveillance

    No full text
    Reliable molecular identification of vertebrate species from morphologically unidentifiable tissue is critical for the prosecution of illegally-traded wildlife products, conservation-based biodiversity research, and identification of blood-meal hosts of hematophagous invertebrates. However, forensic identification of vertebrate tissue relies on sequencing of the mitochondrial cytochrome oxidase I (COI) ‘barcode’ gene, which remains costly for purposes of screening large numbers of unknown samples during routine surveillance. Here, we adapted a rapid, low-cost approach to differentiate 10 domestic and 24 wildlife species that are common in the East African illegal wildlife products trade based on their unique high-resolution melting profiles from COI, cytochrome b, and 16S ribosomal RNA gene PCR products. Using the approach, we identified (i) giraffe among covertly sampled meat from Kenyan butcheries, and (ii) forest elephant mitochondrial sequences among savannah elephant reference samples. This approach is being adopted for high-throughput pre-screening of potential bushmeat samples in East African forensic science pipelines
    corecore