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Abstract

Background

Co-infection, especially with pathogens of dissimilar genetic makeup, may result in a more

devastating impact on the host. Investigations on co-infection with neglected zoonotic path-

ogens in wildlife are necessary to inform appropriate prevention and control strategies to

reduce disease burden in wildlife and the potential transmission of these pathogens

between wildlife, livestock and humans. This study assessed co-exposure of various Ken-

yan wildflife species with Brucella spp, Coxiella burnetii and Rift Valley fever virus (RVFV).

Methodology

A total of 363 sera from 16 different wildlife species, most of them (92.6%) herbivores, were

analysed by Enzyme-linked immunosorbent assay (ELISA) for IgG antibodies against Bru-

cella spp, C. burnetii and RVFV. Further, 280 of these were tested by PCR to identify Bru-

cella species.

Results

Of the 16 wildlife species tested, 15 (93.8%) were seropositive for at least one of the patho-

gens. Mean seropositivities were 18.9% (95% CI: 15.0–23.3) for RVFV, 13.7% (95% CI:

10.3–17.7) for Brucella spp and 9.1% (95% CI: 6.3–12.5) for C. burnetii. Buffaloes (n = 269)

had higher seropositivity for Brucella spp. (17.1%, 95% CI: 13.0–21.7%) and RVFV (23.4%,

95% CI: 18.6–28.6%), while giraffes (n = 36) had the highest seropositivity for C. burnetii

(44.4%, 95% CI: 27.9–61.9%). Importantly, 23 of the 93 (24.7%) animals positive for at least
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one pathogen were co-exposed, with 25.4% (18/71) of the positive buffaloes positive for bru-

cellosis and RVFV. On molecular analysis, Brucella DNA was detected in 46 (19.5%, CI:

14.9–24.7) samples, with 4 (8.6%, 95% CI: 2.2–15.8) being identified as B. melitensis. The

Fisher’s Exact test indicated that seropositivity varied significantly within the different animal

families, with Brucella (p = 0.013), C. burnetii (p = <0.001) and RVFV (p = 0.007). Location

was also significantly associated (p = <0.001) with Brucella spp. and C. burnetii

seropositivities.

Conclusion

Of ~20% of Kenyan wildlife that are seropositive for Brucella spp, C. burnetii and RVFV,

almost 25% indicate co-infections with the three pathogens, particularly with Brucella spp

and RVFV.

Author summary

Infection of an animal with more than one pathogen may result into a more devastating

impact. Only few studies have investigated co-infection with multiple pathogens in wild-

life, despite their key role as reservoirs of zoonotic diseases. Therefore, there is need for

investigations on co-infection with neglected zoonotic pathogens in wildlife to inform

prevention and control approaches and reduce disease impact in wildlife and potential

transmission of these pathogens between wildlife, livestock, and humans. This study

assessed co-exposure of various Kenyan wildlife species with three zoonotic pathogens,

including Brucella spp, Coxiella burnetii and Rift Valley fever virus (RVFV). Results from

this study revealed widespread, but varied exposure levels to the three individual patho-

gens within the several wildlife species. Likewise, the study also found the presence of co-

exposure with the three pathogens. The findings from this study points to the need for

establishment of surveillance and control programmes that target multiple pathogens in

the wildlife populations to reduce the risk of transmission of infectious pathogens in wild-

life and their zoonotic transmission.

Introduction

Zoonotic infections remain a key global threat, with emergence of new zoonoses such as Mar-

burg and Ebola, as well as the resurgence and persistence of existing zoonotic infections, lead-

ing to devastating social, economic and health outcomes [1,2]. Human-animal interactions

underpin the transmission of zoonoses, with the zoonotic pathogens being mobilized between

vertebrate animals (both domestic and wildlife) and humans through various routes including

direct contact with infected hosts, or indirect contact via the food chain, the environment or

intermediate vectors such as ticks and mosquitoes [3]. Wildlife have been implicated in the

emergence, maintenance and spillage of over 70% of zoonotic diseases [4–7]. Multisectoral,

One Health strategies are thus recommended to predict, mitigate and control zoonotic infec-

tions [2].

Although many zoonotic diseases have a global distribution, several zoonoses categorized

as “neglected zoonotic diseases” (NZDs), are associated with poverty, and huge public health

and economic burden amongst the global poor [8]. Developing countries in Africa and Asia
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have higher disease burden of these NZDs such as brucellosis, Q fever and Rift Valley fever,

which are also classified as extremely dangerous pathogens (EDPs) [9–11]. The prevalence of

these EDPs is usually underestimated and the risk levels remain understudied. Hence their

control and prioritization in surveillance programmes in most developing countries remains

underfunded [1,8]. Thus the first step towards understanding these zoonotic pathogens in a

One Health framework is to understand their prevalence in wildlife populations.

Brucellosis, Q fever and RVF are associated with acute undifferentiated febrile illness in

humans, which may progress to chronic disease with systemic manifestations [12–15]. In live-

stock, these three diseases cause abortion storms, stillbirths, premature and/or weak offspring,

with significant reproductive and economic losses to farmers [13,16,17]. Humans acquire the

causative pathogens through direct contact with tissues or body fluids of infected animals e.g.

aborted materials or carcasses, aerosols in the case of Q fever and consumption of unpasteur-

ized milk and dairy products in the case of brucellosis.

Increasing reports point to the role of wildlife as potential reservoirs for Brucella spp, Cox-
iella burnetti and RVF virus, although systematic studies on the ecology and epidemiology of

these pathogens in wild animals remains limited. Recently, Simpson and co-workers [18],

reported brucellosis in many species of wildlife in Africa, with buffalo, being implicated as

maintenance hosts for Brucella species. Although C. burnetii is known to infect wildlife species

[19], this pathogen was not detected in a previous survey that screened variety of wildlife spe-

cies in Kenya [20]. In the case of RVF virus, little is known on the role of wildlife, although

some studies suggest that wild animals may constitute a reservoir system for RVF virus during

inter-epidemic seasons and in enzootic areas [21,22].

While several studies have shown exposure and potential circulation of Brucella spp, Cox-
iella burnetti and RVF virus in various wildlife species, the evidence for co-exposure of multi-

ple species of these pathogens within wildlife populations, remains unexplored. Simultaneous

spillover of multiple pathogens from wildlife to livestock and humans are likely to have impli-

cations on disease pathogenesis, disease course and health outcomes [23]. Co-infections may

alter virulence of pathogens and subsequent disease outcomes in the hosts [23–25]. Across a

wide range of pathogen taxa, co-infections generally lead to worse health outcomes for hosts

and increase within host pathogen titers, altering transmission ecologies. Understanding these

dynamics is therefore useful not only in furthering our knowledge of wildlife in the epidemiol-

ogy of Q fever, RVF, and brucellosis, but also in calibrating existing risk models for these dis-

eases in various contexts. Hence, the current study analyzed the seropositivity of Q fever, RVF,

and brucellosis in 16 wildlife species belonging to the orders Artiodactyla, Perissodactyla and

Carnivora from various parts of Kenya. We performed a retrospective study where samples

collected during routine animal immobilizations for interventions due to traumatic injuries,

translocation and collaring were tested. The findings give preliminary information on occur-

rence of co-infections in wildlife by geographic region, which has not been previously

reported. We examined serological evidence of exposure to single and multiple pathogens, as

well as molecular analysis of Brucella spp. in the different wildlife species.

Materials and methods

Study area and samples

A total of 363 archived sera samples from 16 wildlife species (Artiodactyla, Perissodactyla and

Carnivora) were obtained from the Kenya Wildlife Service (KWS) in Nairobi. These samples

were collected during routine veterinary interventions and disease surveillance activities con-

ducted by the KWS between 2010 and 2021, and stored at -20˚C. The samples originated from

eight wildlife areas in Kenya including Central Rift area, Maasai Mara ecosystem, Coastal area,
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Tsavo ecosystem, Laikipia-Samburu ecosystem, Amboseli ecosystem, Nairobi National park,

and surrounding areas and Wajir area (Fig 1).

Serology

The serological testing of sera samples to detect the presence of antibodies against Brucella,

Coxiella burnetii and RVFV was done using Enzyme-linked immunosorbent assays (ELISA),

at the International Livestock Research Institute (ILRI), in Nairobi, Kenya. Individual serum

samples were screened in duplicates for antibodies against Coxiella burnetii, RVFV and Bru-
cella. The RVFV ELISA assay was done using ID screen Rift Valley Fever Competition Multi-

species ELISA kit (IDvet innovative diagnostics, France) whereas ID screen Brucellosis Serum

Indirect Multispecies ELISA kit (IDvet innovative diagnostics, France) was used for Brucella,

and PrioCHECK Ruminant Q Fever AB Plate ELISA Kit (Applied Biosystems, Thermo Fisher

Scientific) for C. burnetii. All the assays were done as per the manufacturer’s instructions and

the optical densities were read at wave lengths specified for each kit using BioTek ELISA reader

(Synergy HT, BioTek Winooski, VT 05404 United States).

Fig 1. Total number of tested animals categorized by region sampled and corresponding positivity rates for antibodies against Brucella, C. burnetii and

RVFV. The country boundary was obtained from https://gadm.org/download_country.html. The wildlife parks region boundaries are author-generated based

on spatial boundaries provided by the Kenya Wildlife Service (KWS). The base layers used were appropriately licensed (https://gadm.org/license.html).

https://doi.org/10.1371/journal.pntd.0010596.g001
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Molecular analysis using Real time PCR to detect Brucella species

Further molecular analysis were done to identify the circulating Brucella species among ani-

mals. Total DNA was extracted from 280 serum samples using QIAamp DNA Blood Mini Kit

following the manufacturer’s instructions except for elution which was done using 70μl of

buffer AE. The purity and quantity of eluted DNA was determined using NanoDrop 1000

UV-Vis spectrophotometer (Thermo Scientific, Waltham, MA, USA) and stored at -20˚C.

Brucella genus was determined by Real-time PCR targeting Bcsp31 using the primers and

probes listed in S1 Table. The samples whose amplification threshold value was less than 40

were classified as PCR positive for Brucella. Multiplex Real time PCR was done on PCR-posi-

tive samples using species-specific primers and probes previously developed for B.melitensis,
B. abortus and B. suis (S1 Table). Besides the test samples, each assay included a non-template

(negative control), and a positive control DNA for each Brucella species.

The PCR amplifications were done using 2x Luna Universal Probe qPCR master mix (New

England BioLabs, MA, USA), in a 20 μl reaction volume as previously described [26]. Amplifi-

cation was performed on QuantStudio 5 Real-time PCR System (Life Technologies Inc.) with

the following conditions: Initial DNA denaturation at 95˚C for 1 min, followed by 42 cycles of

denaturation at 95˚C for 15 secs and 1 min of annealing/amplification at 57˚C.

Statistical analysis

Data were recorded and cleaned in Microsoft Excel version 2018 (IBM, California). All statisti-

cal analysis were performed in R statistical software version 3.6.3 [27]. The packages DescTools
and gmodels within R, were used to perform all descriptive analysis including the estimation of

positivity rates and 95% confidence intervals. The independent factors assessed for their asso-

ciation with the animal-level seropositivity status of the three-targeted pathogens included; age

category, sex, location and animal species were determined using the Fisher’s Exact test. How-

ever, some of the data had incomplete information on categorical factors; 71.1% of the records

had information on animal species and location, while 58.1% and 48.8% had information on

animal sex and age, respectively. The number of records varied by species. The varied numbers

of the responses recorded for the different variables limited the use of multivariable analysis.

Seropositivites were therefore calculated for only those species that had at least 30 samples,

with exception for the animal categories. Tsavo ecosystem and Wajir area were excluded from

the risk factor analysis due to low numbers of animals from these two regions.

Ethical statement

The samples were collected by KWS during their routine surveillance and animal translocation

activities and as such no ethical approval was required for the work.

Results

Wildlife population summary and Elisa esults

A total of 363 sera samples, comprising 199 samples from buffaloes (Syncerus caffer), 36

giraffes (Giraffa camelopardalis), 21 zebras (Equus burchelli), 17 elands (Taurotragus), 15

oryxes (Oryx beisa), 11 waterbucks (Kobus ellipsiprymnus), 11 gazelles (Gazella spp), 9 impalas

(Aepyceros melampus), 8 cheetahs (Acinonyx jubatus), 8 elephants (Loxodonta africana), 8

warthog (Phacochoerus aethiopicus), 7 rhinos (Dicerosbicornis), 5 lions (Panthera leo), 4 wilde-

beests (Connochaetes taurinus), 3 hartebeest (Alcelaphus buselaphus coxii), and 1 leopard

(Panthera pardus) were analyzed. The samples were sourced from Maasai Mara ecosystem

(n = 100), Coastal area (n = 54), Central Rift area (n = 48), Laikipia-Samburu ecosystem
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(n = 32), Southern ecosystem (n = 10) and Wajir area (n = 3). The rest of the samples (n = 103)

did not have information on their source. Of all the 211 samples with information on animal

sex, 119 (56.4%) were males while 92 (43.6%) were females.

Amongst the three tested pathogens, RVFV had the highest seropositivity of 18.9% (95%

CI: 15.0–23.3), followed by Brucella 13.7% (95% CI: 10.3–17.7) and Coxiella burnetii 9.1%

(95% CI: 6.3–12.5) (Table 1). All except one (15/16) of the wildlife species had detectable anti-

bodies against one or more of the three pathogens (Table 1), with only hartebeest (n = 3) test-

ing negative for all the pathogens.

Factors associated with the seropositivity of Brucella
Positivity rates differed significantly between locations for Brucella (Fisher’s Exact Test, P =<

0.001). A relatively higher proportion was recorded among animals sampled in Maasai Mara

ecosystem 33.4% (33/97), Central Rift area 19.1% (9/47), and none from both Laikipia-Sam-

buru ecosystem (0/29) and Coastal area (0/34) (Table 2 and Fig 1). Exposure levels for Brucella
also differed significantly by animal families (Fisher’s Exact Test,p =< 0.013), with antibodies

against Brucella being detected more in Bovidae 17.1% (46/269) than Giraffidae 2.8% (1/36).

No association was also observed between Brucella positivity with sex (Fisher’s Exact Test,

p = 0.864), and age category (Fisher’s Exact Test, p = 0.571).

Factors associated with the seropositivity of C. burnetii
Positivity rates differed significantly between locations for C. burnetii (Fisher’s Exact Test, p =

<0.001). The Southern ecosystem had the highest positivity rate of 81.8% (9/11), Laikipia-

Table 1. Summary of the number of wildlife species tested and proportions of seropositive animals for Brucella, C. burnetii and RVFV.

Animals Brucella C. burnetii RVFV

Categories Families Species Total no.

Tested

No. positive % positive (95% CI) Number

Positive

% positive (95% CI Number of

positive

% positive (95% CI)

Herbivores Bovidae Buffaloes 199 44 22.1 (16.5–28.) 5 2.5 (0.8–5.7) 41 20.6 (15.2–26.9)

Eland 17 2 1 8

Wildebeest 4 0 0 1

Hartebeest 3 0 0 0

Gazelle 11 0 1 0

Impala 9 0 1 3

Waterbuck 11 0 3 0

Oryx 15 0 0 10

Total 269 46 11 4.1 (2.2–6.4) 63 23.4 (18.6–28.6)

Giraffidae Giraffe 36 1 16 44.4 (27.9–61.9) 2 5.6 (0.7–18.70

Suidae Warthog 8 1 0 0

Elephantidae Elephant 8 0 0 2

Equidae Zebra 21 0 3 0

Rhiocerotidae Rhino 7 0 3 1

Total 349 48 13.7 (10.3–17.2) 33 9.4 (6.5–12.3) 68 19.4 (15.5–23.6)

Carnivores Felidae Leopard 1 1 0 0

Lion 5 1 0 0

Cheetah 8 0 0 1

Total 14 2 14.3 (7.1–35.2)� 0 0.0 1 7.1 (0.0–19.1)�

Overall 363 50 13.7 (10.3–17.7) 33 9.1 (6.3–12.5) 69 18.9 (15.0–23.3)

Key:

� Low numbers of animals. Therefore, positivity estimates should be treated with caution

https://doi.org/10.1371/journal.pntd.0010596.t001
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Samburu ecosystem 10.3% (3/29), Central Rift 6.4% (3/47), Coastal area 5.9% (2/34), and Maa-

sai Mara 1.0% (1/97). There was also significant differences in the positivity rates observed

between the various animal families (Fisher’s Exact Test, p<0.001). Coxiella burnetii antibod-

ies were detected in Giraffidae 44.4% (16/36), and Bovidae 4.1% (11/269). Likewise, a higher

proportion of positivity was observed in males 16% (16/100) compared to females 5.3% (4/76),

(Fisher’s Exact Test, p = 0.021). However,there was no association observed between the sero-

positivity of C.burnetii and age category (Fisher’s exact test, p = 0.458).

Factors associated with seropositivity of RVF

The positivity status differed by animal families (Fisher’s Exact Test, p = 0.007). Bovidae 23.4%

(63/269), and Giraffidae 5.6% (2/36). No statistical association was found between RVF posi-

tivity with location (Fisher’s Exact Test, p = 0.130), animal sex (Fisher’s Exact Test, p = 0.792)

and age category (Fisher’s Exact Test, p = 0.667).

Brucella, C. burnetii and RVFV co-exposure in wildlife species

Evidence of co- exposure with antibodies against Brucella, C. burnetii and RVFV was observed

in different wildlife species. Of 93 animals positive for at least one pathogen, 23 (24.7%) were

co-exposed, with 25.4% (18/71) of the positive buffaloes positive for brucellosis and RVF. The

overall co-exposure with antibodies from any of the three pathogens was 24.7% (95% CI: 16.4–

34.8). A relatively higher co-exposure was detected between Brucella and RVFV 22.7% (95%

CI: 14.4–32.9), followed by C. burnetii and RVFV14.3% (95% CI: 1.7–42.8). Notably, there was

no co-exposure between Brucella and C. burnetii antibodies for any species, whereas RVFV

had co-exposure with either Brucella and C. burnetii (n = 1) (Table 3).

Molecular analysis for detection of Brucella spp

BrucellaDNA was detected in eight out of all the 16 analyzed wildlife species. An aggregate of

46 samples were positive for Brucella species DNA by PCR (Table 4). A total of four samples (3

buffaloes and 1 giraffe) tested positive for B.melitensis, while none of the samples amplified

with B. suis and B. abortus species targets (S1 Fig).

Discussion

This study moved from the widely-used approach of investigating single pathogens to a simul-

taneous investigation of multiple pathogens, each with a different transmission mode, to fill

Table 2. Factors associated with Brucella, C.burnetii and RVFV positivity.

Factors Brucella C. burnetii RVFV

Variable Category Positivity p-value Positivity p-value positivity p-value

Sex Male 5% (5/100) 0.864 16% (16/100) 0.021 15% (15/1100) 0.792

Female 7.9% (6/76) 5.3% (4/76) 18.4% (14/76)

Families Bovidae 17.1% (46/269) 0.013 4.1% (11/269) <0.001 23.4% (63/269) 0.007

Giraffidae 2.8% (1/36) 44.4% (16/36) 5.6% (2/36)

Age category Sub-adult 0.0% (0/5) 0.0% (0/5) 0.0% (0/5)

Adult 5.7% (5/87) 0.751 14.9% (13/87) 0.458 8.0% (7/87) 0.667

Location Southern ecosystem 0.0% (0/11) <0.001 81.8% (9/11) <0.001 0.0% (0/11) 0.130

Central Rift area 19.1% (9/47) 6.4% (3/47) 29.8% (14/47)

Coastal area 0.0% (0/34) 5.9% (2/34) 38.2% (13/34)

Laikipia-Samburu ecosystem 0.0% (0/29) 10.3% (3/29) 27.6% (8/29)

Maasai Mara ecosystem 34.0% (33/97) 1.0% (1/97) 24.7% (24/97)

https://doi.org/10.1371/journal.pntd.0010596.t002
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the existing knowledge gap on the co-exposure to one viral (RVFV) and two bacterial (Brucella
and C. burnetii) pathogens in wildlife populations in Kenya. Co-infection is widely recognized

as one of the leading drivers of pathogen evolution and epidemiology [23,28], with more dev-

astating epidemics observed in co-infected populations. We present evidence of co-exposure

to Brucella, C. burnetii and RVFV exposure in various wildlife species in Kenya. We also

observed variations in positivity rates of each of the three pathogens as a single exposure. How-

ever, co-occurrence between Brucella and C. burnetii antibodies were not detected in our data.

We also found evidence of BrucellaDNA in several wildlife species and B.melitensisDNA in

buffaloes and giraffes.

We found an overall co-occurrence of Brucella, C. burnetii and RVFV antibodies in wildlife

to be 24.7%, which is higher than the recently reported 15.0% of co-occurrence of the same

pathogens in camels in Kenya [29]. Interestingly, we observed co-exposures with RVFV as

common, more frequently with Brucella and less frequently with C. burnetii. These findings

suggests that wildlife species could play a significant role in maintaining and transmitting mul-

tiple zoonotic pathogens at the same time [4,7]. Indeed wildlife species are known to be reser-

voirs of many zoonotic pathogens, which may spillover to either livestock and humans

directly, or via an appropriate intermediate host [30]. Further, the increasing human popula-

tion, coupled with shrinking and degraded wildlife habitats, are increasing wildlife population

Table 3. Showing proportion of co-exposure with Brucella, C. burnetii and RVFV antibodies in different wildlife species. Only wildlife species that had an exposure

with at least one of the pathogens were included in the analysis for co-exposure.

Wildlife species C. burnetii and

RVF virus

Brucella and

RVF virus

C. burnetii and

Brucella
Co-exposure with any of the three

pathogens

Total N N % positive (95% CI) Total

n

% positive

(95% CI)

Total

n

Total

n

% positive

(95% CI)

Buffaloes 71 0 0.0 18 25.4 (15.7–37.1) 0 18 25.3 (15.8–37.1)

Eland 9 1 11.1(0.3–48.2) 1 11.1 (0.3–48.2) 0 2 22.2 (2.8–60.0)

Giraffe 8 0 0.0 1 12.5 (0.3–52.6) 0 1 12.5 (0.3–52.6)

Rhino 2 1 50 (1.3–98.7) 0 0.0 0 1 50.0 (1.3–98.7)

Impala 3 1 33.3 (0.8–90.6) 0 0.0 0 1 33.3 (0.8–90.6)

Total 93 3 14.3 (1.7–42.8) 20 22.7 (14.4–32.9) 0 23 24.7 (16.4–34.8)

Key: N total number of animals that tested positive for any of the three pathogens (both single and co- exposure), n number of co-exposure cases, CI Confidence

Interval.

https://doi.org/10.1371/journal.pntd.0010596.t003

Table 4. Showing wildlife species with the genus Brucella PCR positive results. The total and distribution of samples positive for genus Brucella, B. abortus, B.melitensis
and B. suis.

Wildlife species Total number of positive samples

Species Total tested Genus Brucella. B. abortus B. melitensis B. suis
Buffaloes 177 32 0 3 0

Cheetah 6 1 0 0 0

Eland 9 3 0 0 0

Elephant 5 2 0 0 0

Giraffe 20 5 0 1 0

Lion 4 1 0 0 0

Oryx 6 1 0 0 0

Warthog 8 1 0 0 0

Total 235 46 (19.5%) 0 (0.0%) 4 (8.6%) 0 (0.0%)

https://doi.org/10.1371/journal.pntd.0010596.t004
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densities and could be responsible for transmitting infectious diseases and the relatively higher

rate of co-occurrence of pathogens [31].

Our study found no evidence of co-exposure to Brucella and C. burnetii, despite their single

occurrence in the same wildlife populations. Nevertheless, this coinfection was reported in

domestic animals in Guinea [32] and therefore, we cannot entirely rule out the possibility of

co-exposure to the two pathogens in wild species. Further, our ongoing unpublished studies

have also identified Brucella and C. burnetii co-exposure in livestock belonging to the Bovidae
family, to which some wildlife species investigated here belong. Nevertheless, these findings

highlight the need to fully investigate the potential microbial interactions amongst Brucella
spp. and C. burnetii in wildlife hosts.

We observed a higher rate of seropositivity to Brucella species (33%) and RVFV (20.4%) in

the Maasai Mara ecosystem relatively to the rest of the areas in this study, suggesting an ecol-

ogy permissive for transmission of both pathogens. Brucella species can survive in the environ-

ment for several months in cool and moist conditions which are also necessary for cryptic

RVFV vectors breeding [33]. In addition, scavenging of contaminated placentas and weak off-

spring by predators, could be an additional risk factor for environmental transmission through

mechanical dispersal for this pathogen. Other studies have shown the positivity rate of Brucella
was similar for cattle (31.8%) and human (40.8%) in the same region, where there are intense

wildlife and livestock interaction [26,34]. This highlights the interaction between wildlife, live-

stock, and humans in Brucella disease ecology. High wildlife and livestock population densi-

ties, climatic and land-use changes, and the perennial human-wildlife conflict in this

ecosystem all lead to increasing wildlife-livestock-human interaction, making it a disease

transmission hotspot posing public health risks [35]. This and other similar ecosystems could

be ideal for investigating risk factors associated with zoonosis co-occurrence/co-infection

dynamics. Although close contact between wildlife, human and livestock enable transmission

of zoonotic pathogens [34], the directionality of transmission, could not be deduced from the

current study; are these wildlife acting as reservoir hosts, or are they transmission dead ends.

Therefore, further research involving a multidisciplinary, One Health approach is needed to

fully explore the complex transmission dynamics of zoonotic pathogens that we studied and

others in human-wildlife-livestock interfaces to inform integrated program for concurrent

control of zoonoses.

The exposure levels for both Brucella spp and C. burnetii differed significantly, depending

on the study locations, corroborating with reports of clustering of Brucella spp, C. burnetii and

cases of other infectious diseases in domesticated animals [26,34]. However, a statistical associ-

ation between location and animal species with exposure levels to RVFV antibodies was not

found, contrary to previous reports [36,37]. Thus, the observed differences in exposure levels

in different locations perhaps arose from spatial differences in environmental factors and the

animal species present in various locations, considering that positivity rates also differed sig-

nificantly in the different animal species. Future studies should target specific host species with

unbiased sampling to better identify driving factors of co-exposure or co-infection. Regardless

of the limitations of using archived samples in the current study, these findings have implica-

tions on the spread of zoonotic disease through wildlife movement, e.g., through natural

migrations and wildlife translocations. Policies need to integrate disease risk analyses during

wildlife translocations to prevent the introduction of pathogens to new areas or to spread to

other wildlife, humans, and livestock in the destinations.

By highlighting evidence of exposure to three zoonotic pathogens, this study draws atten-

tion to potential anthropogenic activities that may result in spillovers of brucellosis, RVF, and

Q fever infections from wildlife to humans and livestock. Emergence and spread of zoonotic

infections is driven by several anthropogenic factors, including habitat fragmentation and
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degradation, increasing consumption of animal-derived foods; agricultural intensification;

human encroachment in wildlife habitats and climate change, which cumulatively increase

human-animal interactions. The hunting and trade of wildlife for meat may pose a heightened

threat for potential exposure of humans to Brucella, C. burnetii and RVFV, for which slaughter,

handling, and consumption of contaminated carcasses are major risk factors [35,38–39]. Our

findings that wild ungulates (especially buffalo) had the highest exposure rates for all the path-

ogens, coupled with the fact that wild ungulate species are predominantly hunted for bushmeat

in eastern Africa [36,40–43], underpin the potential risk of these and other anthropogenic

activities in wildlife zoonotic transmission. Additional studies geared specifically to investigate

these pathogens from a One Health perspective are warranted. These will target the interfaces

between wildlife, livestock, and humans for instance, testing for infection with multiple patho-

gens where water and land resources are shared.

The results from molecular analysis of Brucella species demonstrated the presence of Bru-
cellaDNA in different wildlife hosts and further confirmed possible circulation of the zoonotic

species of Brucella (B.melitensis) in buffaloes and giraffe. However, there were disparities

between the serological and molecular findings concerning brucellosis in that not all animals

positive for Brucella antibodies were positive by DNA analysis. These findings augment Alsu-

baie and co-workers’ [44] findings where serological diagnosis in human patients did not cor-

relate with pathogen isolation by culture. This could be partly due to transient presence of

Brucella antigens in blood where they are detected only for a short period around abortions,

whereas antibodies persist for longer durations in the absence of antigens [45]. Caution should

therefore be exercised in the choice of the diagnostic assay, based on the study objective(s).

Nonetheless, the molecular findings of Brucella melitensisDNA in buffalo and giraffe further

strengthen the evidence that wildlife harbors the pathogens and may have active infections

that could be transmissible to susceptible hosts, especially humans, given that B.melitensisis a

major cause of bloodstream infections and febrile illness in pastoral communities in eastern

Africa [26,46].

This study utilized archived samples collected retrospectively over 10 years, which limited

our ability to fully evaluate the contribution of different variables to the epidemiology of zoo-

notic diseases under investigation. Therefore, active nationwide surveillance with and system-

atic sampling approach could be conducted to fully explore the epidemiology of Brucella,

Coxiella and RVFV in wildlife populations in Kenya, preferably augmented with laboratory

surveillance.
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