15 research outputs found

    The long-term effects of whole-tree harvest at final felling on soil properties in a Norway Spruce (Picea Abies (L) Karst.) Stand

    Get PDF
    Increased demand for forest-derived biomass has resulted in changes in harvest intensities in Finland. Conventional stem-only harvest (CH) has to some extent been replaced with whole-tree harvest (WTH). The latter involves a greater removal of nutrients from the forest ecosystem, as all the above ground biomass is exported from the site. This has raised concerns that WTH could result in large changes in the nutrient dynamics of a forest stand and could eventually lower its site productivity. Little empirical data exists to support this assumption as only a limited number of studies have been conducted on the topic. A majority of these discuss the short-term effects, thus the long-term consequences remain unknown. The objective of this study was to compare differences in soil properties after CH and WTH in a fertile Norway spruce (Picea abies (L) Karst.) stand in Southern Finland. The site was clear-felled in August 2000 and spruce seedlings were planted in the following summer. Soil sampling in the form of systematic randomized sampling was carried out in May 2011. Changes in base saturation, cation exchange capacity, elemental pools (total and exchangeable) and acidity were studied in both organic and mineral horizons. The results indicate that WTH lowered effective cation exchange capacity and base saturation particularly in the humus layer. The pools of exchangeable Al and Fe were increased in the humus layer, whereas the amount of exchangeable Ca decreased in both layers. WTH also resulted in lower Ca/Al-ratios across the sampled layers. Treatment did not have a significant effect on pH, total pools of elements or on the C/N-ratio of the soil. The results suggest that although the stand possesses significant pools of nutrients at present, WTH, if continued, could have long-term effects on site productivity

    The long-term effects of whole-tree harvest at final felling on soil properties in a Norway Spruce (Picea abies (L) Karst.) stand

    Get PDF
    Increased demand for forest-derived biomass has resulted in changes in harvest intensities in Finland. Conventional stem-only harvest (CH) has to some extent been replaced with whole-tree harvest (WTH). The latter involves a greater removal of nutrients from the forest ecosystem, as all the above ground biomass is exported from the site. This has raised concerns that WTH could result in large changes in the nutrient dynamics of a forest stand and could eventually lower its site productivity. Little empirical data exists to support this assumption as only a limited number of studies have been conducted on the topic. A majority of these discuss the short-term effects, thus the long-term consequences remain unknown. The objective of this study was to compare differences in soil properties after CH and WTH in a fertile Norway spruce (Picea abies (L) Karst.) stand in Southern Finland. The site was clear-felled in August 2000 and spruce seedlings were planted in the following summer. Soil sampling in the form of systematic randomized sampling was carried out in May 2011. Changes in base saturation, cation exchange capacity, elemental pools (total and exchangeable) and acidity were studied in both organic and mineral horizons. The results indicate that WTH lowered effective cation exchange capacity and base saturation particularly in the humus layer. The pools of exchangeable Al and Fe were increased in the humus layer, whereas the amount of exchangeable Ca decreased in both layers. WTH also resulted in lower Ca/Al-ratios across the sampled layers. Treatment did not have a significant effect on pH, total pools of elements or on the C/N-ratio of the soil. The results suggest that although the stand possesses significant pools of nutrients at present, WTH, if continued, could have long-term effects on site productivity

    Maaperämuutosten kesto ja ekosysteemin pitkän ajan toipuminen fysikaalisesta ja kemiallisesta kuormituksesta : esimerkkeinä kantojen korjuu ja sadetusimeytys

    Get PDF
    Human-induced disturbances may change vegetation and carbon (C) and nitrogen (N) processes in the forest floor and the soil beneath it. The aim of this dissertation was to study the effects of physical and chemical disturbance on boreal forest soil and vegetation. Two contrasting soil-affecting treatments – stump harvesting and sprinkling infiltration – were studied as case studies. Sprinkling infiltration alters the chemical composition of forest soil, whereas stump harvesting results in changes especially in the physical structure of the forest soil. The effects of stump harvesting on forest soil surface disturbance, C and N pools and mineralization rates, understory vegetation, seedling growth and coarse woody debris (CWD) were studied in Norway spruce (Picea abies (L.) Karst.) stands located in Central and Southern Finland. The results of this study indicate that stump harvesting causes soil surface disturbance, and mixing and relocation of organic matter in the soil profile, which in turn is reflected to the soil C and N dynamics. Furthermore, stumps, coarse roots and fine coarse roots represent a significant portion of the stand CWD, belowground biomass and nutrients. The effects of sprinkling infiltration on forest soil, tree growth and understory vegetation and their respective recovery were studied in an experimental stand that had been infiltrated with surface water in order to produce artificial groundwater. Sprinkling infiltration had short-term effects on tree growth and long-term effects on soil chemical processes and understory vegetation. In conclusion, sprinkling infiltration is an environment altering treatment, which based on the findings of this study, can affect ecosystem recovery. The results of this study demonstrate that disturbances affect the function and structure of forest soil and these changes can persist on the surface of the soil in the organic layer and deeper in the mineral soil. Furthermore, this dissertation highlights the need for long-term perspectives in ecosystem management and planning.Maaperä on metsäekosysteemin rakenteen ja toiminnan perusta. Maaperän fysikaaliset, kemialliset ja biologiset prosessit säätelevät koko metsän hiilen, ravinteiden ja veden kiertoa. Ihminen on toiminnallaan merkittävästi muuttanut suomalaisten metsämaiden rakennetta ja toimintaa ja edelleen metsäekosysteemin häiriödynamiikkaa. Tässä väitöskirjassa määritettiin kahden maaperän rakenteeseen ja kemialliseen koostumukseen vaikuttavan toimenpiteen − kantojen korjuun ja tekopohjaveden muodostamisen – pitkäaikaisvaikutuksia metsämaaperän ja -kasvillisuuden rakenteeseen, toimintaan ja toipumiseen. Kantojen korjuussa maaperän pintakerros häiriintyy ja siitä poistuu hiiltä ja ravinteita korjattavien juurten ja kantojen mukana. Tekopohjaveden muodostaminen sadettamalla ravinnerikasta järvivettä harjualueille puolestaan lisää maaperään hiiltä ja ravinteita, ja käsittelyn tuloksena maaperän kemiallinen koostumus muuttuu ja metsäekosysteemi rehevöityy. Aiemmat kotimaiset tutkimukset näiden toimenpiteiden vaikutuksista on tehty korkeintaan muutamia vuosia toimenpiteiden päättymisen jälkeen eikä vaikutusten kestoa ja ekosysteemien toipumisnopeutta tunneta. Tässä työssä kantojen korjuun maaperävaikutuksia tutkittiin Keski- ja Etelä-Suomessa ja tekopohjaveden ekosysteemivaikutusten kestoa Keski-Suomessa sadetusimeytystä käyttävällä tekopohjavesilaitoksella. Tutkimuksissa tarkasteltiin metsäekosysteemin toipumista toimenpiteistä, jotka olivat päättyneet yli 10 vuotta aiemmin. Tulokset osoittavat, että kantojen korjuun ja sen jälkeen tehtävän maanmuokkauksen seurauksena kuusikoiden maaperän pintakerros häiriintyy laajalti rakenteeltaan ainakin yli 10 vuoden ajaksi. Suomalaisten havupuiden kannot ja paksujuuret ovat huomattava hiilen ja ravinteiden pitkäaikaisvarasto maaperässä, ja kantojen korjuun merkittävin ekologinen vaikutus on lahopuun ja sen hiilivaraston määrän väheneminen. Tekopohjaveden muodostaminen sadettamalla muutti maaperän happamuuden ja ravinteisuuden sekä edelleen kasvilajiston, ja muutokset kestivät pitkään imeytyksen lopettamisen jälkeen. Tekopohjavesialueilla maaperän pH oli 12−15 vuoden jälkeen sadetuksen päättymisestä edelleen huomattavasti korkeampi sadetetuilla koealoilla kuin vastaavilla kasvupaikoilla, joita ei oltu sadetettu. Lisäksi maaperän ravinteiden pitoisuudet olivat myös korkeampia sadetuksen seurauksesta. Myös aluskasvillisuuden lajien runsaussuhteet ja dynamiikka olivat edelleen muuttuneita. Tutkimuksen tulokset osoittavat, että maan pintakerroksen rakenne ja maaperän toiminta häiriintyy pitkäaikaisesti molempien käsittelyjen seurauksena. Ympäristövaikutusten keston ja niistä toipumisen tunteminen on ensiarvoisen tärkeää, jotta metsäenergian korjuun päätöksentekoa ja suunnittelua ja vastaavasti tekopohjavesilaitosten toimintaa voidaan suunnitella mahdollisimman pienin ympäristöhaitoin

    Sprinkling infiltration as an artificial groundwater recharge method - Long-term effects on boreal forest soil, tree growth and understory vegetation

    Get PDF
    The artificial recharge of groundwater by infiltrating surface water through forest soil has been introduced as a groundwater producing practice in Finland. As a result, the forest soil, as well as the whole ecosystem, is subjected to extremely high inputs of carbon and nutrient rich lake water. The effects of sprinkling infiltration on forest soil, tree growth and understory vegetation and their respective recovery were studied on a forested esker in central Finland. The Scots pine-dominated experimental plots were sprinkled with lake water in 1998-2001 and sampled after a 12-15-year recovery period. Soil pH and base cation concentration, as well as the rate of net N mineralization were significantly higher at the plots that had been infiltrated. The concentrations of base cations calcium and magnesium were thousands of times higher in the infiltrated soil than in the untreated soil. In addition, sprinkling infiltration had favored early-successional herbs, grasses and forbs and negatively affected late successional, slow-growing mosses and lichens. Sprinkling infiltration had significantly increased tree radial growth. Sprinkling infiltration is an environment altering soil treatment method which, based on the findings of this study, can have long-term effects on tree growth, soil processes and understory vegetation.Peer reviewe

    Carbon and nitrogen pools and mineralization rates in boreal forest soil after stump harvesting

    Get PDF
    The use of forest-derived biomass has steadily increased in Finland and Sweden during the past decades leading to more intensive forest management practices in the region, such as whole-tree harvesting, both above- and belowground. Stump harvesting results in a direct removal of stump and coarse-root carbon (C) from the stand and can cause extensive soil disturbance, which has been suggested to increase C mineralization. In this study, the effects of stump harvesting on soil C and nitrogen (N) mineralization, and soil surface disturbance were studied in two different clear-felled Norway spruce (Picea abies) sites in Central Finland. The treatments were whole-tree harvesting (WTH, removal of stems and logging residues), and WTH and stump harvesting (WTH + S). Both sites, Honkola (2 stands) and Haukilahti (6 stands) were mounded. In both treatments, soil samples were taken from different soil layers down to a total depth of 20 cm in the mineral soil from (i) mounds, (ii) undisturbed soil and (iii) pits. The sampling was performed 11-12 years after treatments. Soil C and N mineralization rates were determined in laboratory incubation experiments. In addition, total C and N pools (g m(2)) were estimated for each disturbance class and soil layer. Soil C and N pools had a tendency to be lower following stump harvesting, but no statistically significant treatment effect was detected. Stump harvesting increased soil mixing as indicated by a significant decrease in C concentration in the mound disturbance class. There was no significant effect of stump harvesting on soil C mineralization rates. A combination of mineralization rates and soil pool data showed that field C mineralization (g CO2-C m(-2) yr(-1)) did not significantly differ between stands where stumps were removed or were retained. Further, stump harvesting did not seem to have any stimulating effect on soil CO2 efflux 11-12 years after treatment. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    Stump harvesting in Picea abies stands: soil surface disturbance and biomass distribution of the harvested stumps and roots

    Get PDF
    Finland has a long tradition of utilizing forest-based biomass for energy and industry purposes and the use has steadily increased in the past decade due to changes in international and regional energy policies. Intensive harvesting practices, in which a larger proportion of the woody biomass is removed from the forest stand, are becoming more common. The objectives of this study were (i) to evaluate the spatial and temporal extent of soil surface disturbance caused by stump-root system harvesting and (ii) to quantify how much biomass and nitrogen is removed from the stand in stump and coarse root removal. The extent of surface disturbance was assessed in three clear-cut Norway spruce (Picea abies, (L.) Karst.) stands in southern and central Finland, differing in time since harvest. To determine the biomass distribution of the stump-root system, stumps and coarse roots were excavated at one of the experimental stands. Across all age classes (time since harvest) less soil surface had remained undisturbed at the stump harvesting sites (48%) than at the sites where only mechanical site preparation (72%) had been carried out. Thus, the findings of this study indicate that soil disturbance caused by stump harvesting can exist on forest soil surface for more than a decade following harvest. The total biomass of the stump-root system in the stand was estimated to 39.3 Mg ha-1 and 79% of this biomass was removed during stump harvesting and consequently, 8.3 Mg ha-1 of stump-root biomass remained in soil. The stump-root system accounted for 17% of the whole-tree biomass, and coarse roots and fine coarse roots represented a significant portion of it (73%). Thus, the stump-root system represents a large biomass component in boreal forest stands. However, forest management utilizing stumps may result in carbon losses from the stand.Peer reviewe

    Sustainable forest biomass: a review of current residue harvesting guidelines

    Get PDF
    http://blogs.biomedcentral.com/on-physicalsciences/2021/04/15/forest-bioenergy-sustainable/Forest biomass harvesting guidelines help ensure the ecological sustainability of forest residue harvesting for bioenergy and bioproducts, and hence contribute to social license for a growing bioeconomy. Guidelines, typically voluntary, provide a means to achieve outcomes often required by legislation, and must address needs related to local or regional context, jurisdictional compatibility with regulations, issues of temporal and spatial scale, and incorporation of appropriate scientific information. Given this complexity, comprehensive reviews of existing guidelines can aid in development of new guidelines or revision of existing ones. We reviewed 32 guidelines covering 43 jurisdictions in the USA, Canada, Europe and East Asia to expand upon information evaluated and recommendations provided in previous guideline reviews, and compiled a searchable spreadsheet of direct quotations from documents as a foundation for our review. Guidelines were considered in the context of sustainable forest management (SFM), focusing on guideline scope and objectives, environmental sustainability concerns (soils, site productivity, biodiversity, water and carbon) and social concerns (visual aesthetics, recreation, and preservation of cultural, historical and archaeological sites). We discuss the role of guidelines within the context of other governance mechanisms such as SFM policies, trade regulations and non-state market-driven (NSMD) standards, including certification systems. The review provides a comprehensive resource for those developing guidelines, or defining sustainability standards for market access or compliance with public regulations, and/or concerned about the sustainability of forest biomass harvesting. We recommend that those developing or updating guidelines consider (i) the importance of well-defined and understood terminology, consistent where possible with guidelines in other jurisdictions or regions; (ii) guidance based on locally relevant research, and periodically updated to incorporate current knowledge and operational experience; (iii) use of indicators of sensitive soils, sites, and stands which are relevant to ecological processes and can be applied operationally; and (iv) incorporation of climate impacts, long-term soil carbon storage, and general carbon balance considerations when defining sustainable forest biomass availability. Successful implementation of guidelines depends both on the relevance of the information and on the process used to develop and communicate it; hence, appropriate stakeholders should be involved early in guideline development.Peer reviewe

    Improved forest management as a natural climate solution: A review

    No full text
    Natural climate solutions (NCS), a set of land management, conservation and restoration practices aimed at mitigating climate change, have been introduced as cost-effective strategies to increase carbon (C) sequestration in terrestrial ecosystems. Improved forest management (IFM) has been identified as one NCS for working forests with substantial climate change mitigation potential. However, there is a disconnect between the policy and carbon markets context and the scientific evidence for verifiable C benefits. Further, forest soil C—the largest forest C pool—has largely been excluded from current forest management guidelines and has not been included in the IFM discourse. Herein, we assess the evidence for the potential of specific IFM practices to sequester C in live forest vegetation and store it in both live and dead organic matter, and forest soil. We review IFM approaches that can enhance forest C storage, and links to best management practices and silvicultural systems to offer guidance for practitioners and researchers in the Great Lakes region of the United States. Finally, we discuss the current challenges and opportunities in including soil C in forest C management guidelines and frameworks
    corecore