1,176 research outputs found
Three-dimensional calculation of shuttle charging in polar orbit
The charged particles environment in polar orbit can be of sufficient intensity to cause spacecraft charging. In order to gain a quantitative understanding of such effects, the Air Force is developing POLAR, a computer code which simulates in three dimensions the electrical interaction of large space vehicles with the polar ionospheric plasma. It models the physical processes of wake generation, ambient ion collection, precipitating auroral electron fluxes, and surface interactions, including secondary electron generation and backscattering, which lead to vehicle charging. These processes may be followed dynamically on a subsecond timescale so that the rapid passage through intense auroral arcs can be simulated. POLAR models the ambient plasma as isotropic Maxwellian electrons and ions (0+, H+), and allows for simultaneous precipitation of power-law, energetic Maxwellian, and accelerated Gaussian distributions of electrons. Magnetic field effects will be modeled in POLAR but are currently ignored
Non-Equilibrium Reaction Rates in the Macroscopic Chemistry Method for DSMC Calculations
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method
Dynamics of fluctuations in an optical analog of the Laval nozzle
Using the analogy between the description of coherent light propagation in a
medium with Kerr nonlinearity by means of nonlinear Schr\"odinger equation and
that of a dissipationless liquid we propose an optical analogue of the Laval
nozzle. The optical Laval nozzle will allow one to form a transonic flow in
which one can observe and study a very unusual dynamics of classical and
quantum fluctuations including analogue of the Hawking radiation of real black
holes. Theoretical analysis of this dynamics is supported by numerical
calculations and estimates for a possible experimental setup are presented.Comment: 7 pages, 4 figure
The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15
Sound and acceleration are detected by hair bundles, mechanosensory structures located at the apical pole of hair cells in the inner ear. The different elements of the hair bundle, the stereocilia and a kinocilium, are interconnected by a variety of link types. One of these links, the tip link, connects the top of a shorter stereocilium with the lateral membrane of an adjacent taller stereocilium and may gate the mechanotransducer channel of the hair cell. Mass spectrometric and Western blot analyses identify the tip-link antigen, a hitherto unidentified antigen specifically associated with the tip and kinocilial links of sensory hair bundles in the inner ear and the ciliary calyx of photoreceptors in the eye, as an avian ortholog of human protocadherin-15, a product of the gene for the deaf/blindness Usher syndrome type 1F/DFNB23 locus. Multiple protocadherin-15 transcripts are shown to be expressed in the mouse inner ear, and these define four major isoform classes, two with entirely novel, previously unidentified cytoplasmic domains. Antibodies to the three cytoplasmic domain-containing isoform classes reveal that each has a different spatiotemporal expression pattern in the developing and mature inner ear. Two isoforms are distributed in a manner compatible for association with the tip-link complex. An isoform located at the tips of stereocilia is sensitive to calcium chelation and proteolysis with subtilisin and reappears at the tips of stereocilia as transduction recovers after the removal of calcium chelators. Protocadherin-15 is therefore associated with the tip-link complex and may be an integral component of this structure and/or required for its formatio
DNA cruciform arms nucleate through a correlated but non-synchronous cooperative mechanism
Inverted repeat (IR) sequences in DNA can form non-canonical cruciform
structures to relieve torsional stress. We use Monte Carlo simulations of a
recently developed coarse-grained model of DNA to demonstrate that the
nucleation of a cruciform can proceed through a cooperative mechanism. Firstly,
a twist-induced denaturation bubble must diffuse so that its midpoint is near
the centre of symmetry of the IR sequence. Secondly, bubble fluctuations must
be large enough to allow one of the arms to form a small number of hairpin
bonds. Once the first arm is partially formed, the second arm can rapidly grow
to a similar size. Because bubbles can twist back on themselves, they need
considerably fewer bases to resolve torsional stress than the final cruciform
state does. The initially stabilised cruciform therefore continues to grow,
which typically proceeds synchronously, reminiscent of the S-type mechanism of
cruciform formation. By using umbrella sampling techniques we calculate, for
different temperatures and superhelical densities, the free energy as a
function of the number of bonds in each cruciform along the correlated but
non-synchronous nucleation pathways we observed in direct simulations.Comment: 12 pages main paper + 11 pages supplementary dat
The Klingon batbugs : Morphological adaptations in the primitive bat bugs, Bucimex chilensis and Primicimex cavernis, including updated phylogeny of Cimicidae
The Cimicidae is a family of blood-dependent ectoparasites in which dispersion capacity is greatly associated with host movements. Bats are the ancestral and most prevalent hosts for cimicids. Cimicids have a worldwide distribution matching that of their hosts, but the global classification is incomplete, especially for species outside the most common Cimicidae taxa. In this study, we place a little-studied cimicid species, Bucimex chilensis, within a comprehensive molecular phylogeny of Cimicidae by sequencing the genomic regions of this and other closely related species. For this study, we collected B. chilensis females from Myotis chiloensis in Tierra del Fuego, 1300 km further south than previously known southernmost distribution boundary. We also sequenced COI regions from Primicimex cavernis, a species which together with B. chilensis comprise the entire subfamily Primiciminae. Using Bayesian posterior probability and maximum-likelihood approaches, we found that B. chilensis and P. cavernis clustered close to each other in the molecular analyses, receiving support from similar morphological features, agreeing with the morphology-based taxonomic placement of the two species within the subfamily Primiciminae. We also describe a previously unrecognized morphological adaptation of the tarsal structure, which allows the austral bat ectoparasite, B. chilensis, to cling on to the pelage of its known host, the Chilean myotis (Myotis chiloensis). Through a morphological study and behavioural observation, we elucidate how this tarsal structure operates, and we hypothesize that by clinging in the host pelage, B. chilensis is able to disperse effectively to new areas despite low host density. This is a unique feature shared by P. cavernis, the only other species in Primiciminae.The Cimicidae is a family of blood-dependent ectoparasites in which dispersion capacity is greatly associated with host movements. Bats are the ancestral and most prevalent hosts for cimicids. Cimicids have a worldwide distribution matching that of their hosts, but the global classification is incomplete, especially for species outside the most common Cimicidae taxa. In this study, we place a little-studied cimicid species, Bucimex chilensis, within a comprehensive molecular phylogeny of Cimicidae by sequencing the genomic regions of this and other closely related species. For this study, we collected B.chilensis females from Myotis chiloensis in Tierra del Fuego, 1,300km further south than previously known southernmost distribution boundary. We also sequenced COI regions from Primicimex cavernis, a species which together with B. chilensis comprise the entire subfamily Primiciminae. Using Bayesian posterior probability and maximum-likelihood approaches, we found that B.chilensis and P.cavernis clustered close to each other in the molecular analyses, receiving support from similar morphological features, agreeing with the morphology-based taxonomic placement of the two species within the subfamily Primiciminae. We also describe a previously unrecognized morphological adaptation of the tarsal structure, which allows the austral bat ectoparasite, B.chilensis, to cling on to the pelage of its known host, the Chilean myotis (Myotis chiloensis). Through a morphological study and behavioral observation, we elucidate how this tarsal structure operates, and we hypothesize that by clinging in the host pelage, B.chilensis is able to disperse effectively to new areas despite low host density. This is a unique feature shared by P.cavernis, the only other species in Primiciminae.Peer reviewe
Large Scale Structures a Gradient Lines: the case of the Trkal Flow
A specific asymptotic expansion at large Reynolds numbers (R)for the long
wavelength perturbation of a non stationary anisotropic helical solution of the
force less Navier-Stokes equations (Trkal solutions) is effectively constructed
of the Beltrami type terms through multi scaling analysis. The asymptotic
procedure is proved to be valid for one specific value of the scaling
parameter,namely for the square root of the Reynolds number (R).As a result
large scale structures arise as gradient lines of the energy determined by the
initial conditions for two anisotropic Beltrami flows of the same helicity.The
same intitial conditions determine the boundaries of the vortex-velocity tubes,
containing both streamlines and vortex linesComment: 27 pages, 2 figure
Recommended from our members
Spectral Libraries for SWATH-MS Assays for Drosophila melanogaster and Solanum lycopersicum.
Quantitative proteomics methods have emerged as powerful tools for measuring protein expression changes at the proteome level. Using MS-based approaches, it is now possible to routinely quantify thousands of proteins. However, prefractionation of the samples at the protein or peptide level is usually necessary to go deep into the proteome, increasing both MS analysis time and technical variability. Recently, a new MS acquisition method named SWATH is introduced with the potential to provide good coverage of the proteome as well as a good measurement precision without prior sample fractionation. In contrast to shotgun-based MS however, a library containing experimental acquired spectra is necessary for the bioinformatics analysis of SWATH data. In this study, spectral libraries for two widely used models are built to study crop ripening or animal embryogenesis, Solanum lycopersicum (tomato) and Drosophila melanogaster, respectively. The spectral libraries comprise fragments for 5197 and 6040 proteins for S. lycopersicum and D. melanogaster, respectively, and allow reproducible quantification for thousands of peptides per MS analysis. The spectral libraries and all MS data are available in the MassIVE repository with the dataset identifiers MSV000081074 and MSV000081075 and the PRIDE repository with the dataset identifiers PXD006493 and PXD006495
Affordances, constraints and information flows as ‘leverage points’ in design for sustainable behaviour
Copyright @ 2012 Social Science Electronic PublishingTwo of Donella Meadows' 'leverage points' for intervening in systems (1999) seem particularly pertinent to design for sustainable behaviour, in the sense that designers may have the scope to implement them in (re-)designing everyday products and services. The 'rules of the system' -- interpreted here to refer to affordances and constraints -- and the structure of information flows both offer a range of opportunities for design interventions to in fluence behaviour change, and in this paper, some of the implications and possibilities are discussed with reference to parallel concepts from within design, HCI and relevant areas of psychology
- …