31 research outputs found

    First outcomes from the PHEBUS FPT1 uncertainty application done in the EU MUSA project

    Get PDF
    The Management and Uncertainties of Severe Accidents (MUSA) project, founded in HORIZON 2020 and coordinated by CIEMAT (Spain), aims to consolidate a harmonized approach for the analysis of uncertainties and sensitivities associated with Severe Accidents (SAs) by focusing on Source Term (ST) Figure of Merits (FOM). In this framework, among the 7 MUSA WPs the Application of Uncertainty Quantification (UQ) Methods against Integral Experiments (AUQMIE – Work Package 4 (WP4)), led by ENEA (Italy), looked at applying and testing UQ methodologies, against the internationally recognized PHEBUS FPT1 test. Considering that FPT1 is a simplified but representative SA scenario, the main target of the WP4 is to train project partners to perform UQ for SA analyses. WP4 is also a collaborative platform for highlighting and discussing results and issues arising from the application of UQ methodologies, already used for design basis accidents, and in MUSA for SA analyses. As a consequence, WP4 application creates the technical background useful for the full plant and spent fuel pool applications planned along the MUSA project, and it also gives a first contribution for MUSA best practices and lessons learned. 16 partners from different world regions are involved in the WP4 activities. The purpose of this paper is to describe the MUSA PHEBUS FPT1 uncertainty application exercise, the methodologies used by the partners to perform the UQ exercise, and the first insights coming out from the calculation phase

    Fast and Large-Scale Anodizing Synthesis of Pine-Cone TiO2 for Solar-Driven Photocatalysis

    No full text
    Anodization has been widely used to synthesize nanostructured TiO2 films with promising photocatalytic performance for solar hydrogen production and pollution removal. However, it usually takes a few hours to obtain the right nanostructures even on a small scale (e.g., 10 mm Ă— 20 mm). In order to attract interest for industrial applications, fast and large-scale fabrication is highly desirable. Herein, we demonstrate a fast and large-scale (e.g., 300 mm Ă— 360 mm) synthesis of pine-cone TiO2 nanostructures within two min. The formation mechanism of pine-cone TiO2 is proposed. The pine-cone TiO2 possesses a strong solar absorption, and exhibits high photocatalytic activities in photo-oxidizing organic pollutants in wastewater and producing hydrogen from water under natural sunlight. Thus, this study demonstrates a promising method for fabricating TiO2 films towards practical photocatalytic applications

    Discrete conformations of epitope II on the hepatitis C virus E2 protein for antibody-mediated neutralization and nonneutralization

    No full text
    The X-ray crystal structure of epitope II on the E2 protein of hepatitis C virus, in complex with nonneutralizing antibody mAb#12, has been solved at 2.90-Å resolution. The spatial arrangement of the essential components of epitope II (ie, the C-terminal α-helix and the N-terminal loop) was found to deviate significantly from that observed in those corresponding complexes with neutralizing antibodies. The distinct conformations are mediated largely by the flexibility of a highly conserved glycine residue that connects these components. Thus, it is the particular tertiary structure of epitope II, which is presented in a spatial and temporal manner, that determines the specificity of antibody recognition and, consequently, the outcome of neutralization or nonneutralization

    Effect of ionic liquid treatment on the structures of lignins in solutions: molecular subunits released from lignin

    No full text
    The solution structures of three types of isolated lignin-organosolv (OS), Kraft (K), and low sulfonate (LS)-before and after treatment with 1-ethyl-3-methylimidazolium acetate were studied using small-angle neutron scattering (SANS) and dynamic light scattering (DLS) over a concentration range of 0.3-2.4 wt %. The results indicate that each of these lignins is comprised of aggregates of well-defined basal subunits, the shapes and sizes of which, in DO and DMSO-d, are revealed using these techniques. LS lignin contains a substantial amount of nanometer-scale individual subunits. In aqueous solution these subunits have a well-defined elongated shape described well by ellipsoidal and cylindrical models. At low concentration the subunits are highly expanded in alkaline solution, and the effect is screened with increasing concentration. OS lignin dissolved in DMSO was found to consist of a narrow distribution of aggregates with average radius 200 ± 30 nm. K lignin in DMSO consists of aggregates with a very broad size distribution. After ionic liquid (IL) treatment, LS lignin subunits in alkaline solution maintained the elongated shape but were reduced in size. IL treatment of OS and K lignins led to the release of nanometer-scale subunits with well-defined size and shape

    A neutralization epitope in the hepatitis C virus E2 glycoprotein interacts with host entry factor CD81.

    Get PDF
    The identification of a specific immunogenic candidate that will effectively activate the appropriate pathway for neutralizing antibody production is fundamental for vaccine design. By using a monoclonal antibody (1H8) that neutralizes HCV in vitro, we have demonstrated here that 1H8 recognized an epitope mapped between residues A524 and W529 of the E2 protein. We also found that the epitope residues A524, P525, Y527 and W529 were crucial for antibody binding, while the residues T526, Y527 and W529 within the same epitope engaged in the interaction with the host entry factor CD81. Furthermore, we detected "1H8-like" antibodies, defined as those with amino acid-specificity similar to 1H8, in the plasma of patients with chronic HCV infection. The time course study of plasma samples from Patient H, a well-characterized case of post-transfusion hepatitis C, showed that "1H8-like" antibodies could be detected in a sample collected almost two years after the initial infection, thus confirming the immunogenicity of this epitope in vivo. The characterization of this neutralization epitope with a function in host entry factor CD81 interaction should enhance our understanding of antibody-mediated neutralization of HCV infections

    Effect of Ionic Liquid Treatment on the Structures of Lignins in Solutions: Molecular Subunits Released from Lignin

    No full text
    The solution structures of three types of isolated ligninorganosolv (OS), Kraft (K), and low sulfonate (LS)before and after treatment with 1-ethyl-3-methylimidazolium acetate were studied using small-angle neutron scattering (SANS) and dynamic light scattering (DLS) over a concentration range of 0.3–2.4 wt %. The results indicate that each of these lignins is comprised of aggregates of well-defined basal subunits, the shapes and sizes of which, in D<sub>2</sub>O and DMSO-<i>d</i><sub>6</sub>, are revealed using these techniques. LS lignin contains a substantial amount of nanometer-scale individual subunits. In aqueous solution these subunits have a well-defined elongated shape described well by ellipsoidal and cylindrical models. At low concentration the subunits are highly expanded in alkaline solution, and the effect is screened with increasing concentration. OS lignin dissolved in DMSO was found to consist of a narrow distribution of aggregates with average radius 200 ± 30 nm. K lignin in DMSO consists of aggregates with a very broad size distribution. After ionic liquid (IL) treatment, LS lignin subunits in alkaline solution maintained the elongated shape but were reduced in size. IL treatment of OS and K lignins led to the release of nanometer-scale subunits with well-defined size and shape
    corecore