237 research outputs found

    HMM-based Offline Recognition of Handwritten Words Crossed Out with Different Kinds of Strokes

    Get PDF
    In this work, we investigate the recognition of words that have been crossed-out by the writers and are thus degraded. The degradation consists of one or more ink strokes that span the whole word length and simulate the signs that writers use to cross out the words. The simulated strokes are superimposed to the original clean word images. We considered two types of strokes: wave-trajectory strokes created with splines curves and line-trajectory strokes generated with the delta-lognormal model of rapid line movements. The experiments have been performed using a recognition system based on hidden Markov models and the results show that the performance decrease is moderate for single writer data and light strokes, but severe for multiple writer data

    Handwriting Recognition of Historical Documents with few labeled data

    Full text link
    Historical documents present many challenges for offline handwriting recognition systems, among them, the segmentation and labeling steps. Carefully annotated textlines are needed to train an HTR system. In some scenarios, transcripts are only available at the paragraph level with no text-line information. In this work, we demonstrate how to train an HTR system with few labeled data. Specifically, we train a deep convolutional recurrent neural network (CRNN) system on only 10% of manually labeled text-line data from a dataset and propose an incremental training procedure that covers the rest of the data. Performance is further increased by augmenting the training set with specially crafted multiscale data. We also propose a model-based normalization scheme which considers the variability in the writing scale at the recognition phase. We apply this approach to the publicly available READ dataset. Our system achieved the second best result during the ICDAR2017 competition

    Absolute Single Ion Thermometry

    Full text link
    We describe and experimentally implement a single-ion local thermometry technique with absolute sensitivity adaptable to all laser-cooled atomic ion species. The technique is based on the velocity-dependent spectral shape of a quasi-dark resonance tailored in a J →\rightarrow J transition such that the two driving fields can be derived from the same laser source leading to a negligible relative phase shift. We validated the method and tested its performances in an experiment on a single 88 Sr + ion cooled in a surface radio-frequency trap. We first applied the technique to characterise the heating-rate of the surface trap. We then measured the stationary temperature of the ion as a function of cooling laser detuning in the Doppler regime. The results agree with theoretical calculations, with an absolute error smaller than 100 μ\muK at 500 μ\muK, in a temperature range between 0.5 and 3 mK and in the absence of adjustable parameters. This simple-to-implement and reliable method opens the way to fast absolute measurements of single-ion temperatures in future experiments dealing with heat transport in ion chains or thermodynamics at the single-ion level

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    Strong quantum correlations in four wave mixing in 85^{85}Rb vapor

    Full text link
    We study quantum intensity correlations produced using four-wave mixing in a room-temperature rubidium vapor cell. An extensive study of the effect of the various parameters allows us to observe very large amounts of non classical correlations.Comment: 8 pages and 8 figures; work presented at the SPIE Photonics Europe conference (Brussels, 2010

    How major depressive disorder affects the ability to decode multimodal dynamic emotional stimuli

    Get PDF
    Most studies investigating the processing of emotions in depressed patients reported impairments in the decoding of negative emotions. However, these studies adopted static stimuli (mostly stereotypical facial expressions corresponding to basic emotions) which do not reflect the way people experience emotions in everyday life. For this reason, this work proposes to investigate the decoding of emotional expressions in patients affected by Recurrent Major Depressive Disorder (RMDDs) using dynamic audio/video stimuli. RMDDs’ performance is compared with the performance of patients with Adjustment Disorder with Depressed Mood (ADs) and healthy (HCs) subjects. The experiments involve 27 RMDDs (16 with acute depression - RMDD-A, and 11 in a compensation phase - RMDD-C), 16 ADs and 16 HCs. The ability to decode emotional expressions is assessed through an emotion recognition task based on short audio (without video), video (without audio) and audio/video clips. The results show that AD patients are significantly less accurate than HCs in decoding fear, anger, happiness, surprise and sadness. RMDD-As with acute depression are significantly less accurate than HCs in decoding happiness, sadness and surprise. Finally, no significant differences were found between HCs and RMDD-Cs in a compensation phase. The different communication channels and the types of emotion play a significant role in limiting the decoding accuracy

    Large 2D Coulomb crystals in a radio frequency surface ion trap

    Full text link
    We designed and operated a surface ion trap, with an ion-substrate distance of 500\mum, realized with standard printed-circuit-board techniques. The trap has been loaded with up to a few thousand Sr+ ions in the Coulomb-crystal regime. An analytical model of the pseudo-potential allowed us to determine the parameters that drive the trap into anisotropic regimes in which we obtain large (N>150) purely 2D ion Coulomb crystals. These crystals may open a simple and reliable way to experiments on quantum simulations of large 2D systems.Comment: 4 pages, 4 figure

    Isotope shifts of natural Sr+ measured by laser fluorescence in a sympathetically cooled Coulomb crystal

    Get PDF
    We measured by laser spectroscopy the isotope shifts between naturally-occurring even-isotopes of strontium ions for both the 5s\,\,^2S_{1/2}\to 5p\,\,^2P_{1/2} (violet) and the 4d\,\,^2D_{3/2}\to 5p\,\,^2P_{1/2} (infrared) dipole-allowed optical transitions. Fluorescence spectra were taken by simultaneous measurements on a two-component Coulomb crystal in a linear Paul trap containing 10310^3--10410^4 laser-cooled Sr+^+ ions. The isotope shifts are extracted from the experimental spectra by fitting the data with the analytical solution of the optical Bloch equations describing a three-level atom in interaction with two laser beams. This technique allowed us to increase the precision with respect to previously reported data obtained by optogalvanic spectroscopy or fast atomic-beam techniques. The results for the 5s\,\,^2S_{1/2}\to 5p\,\,^2P_{1/2} transition are ν88−ν84=+378(4)\nu_{88}-\nu_{84}=+378(4) MHz and ν88−ν86=+170(3)\nu_{88}-\nu_{86}=+170(3) MHz, in agreement with previously reported measurements. In the case of the previously unexplored 4d\,\,^2D_{3/2}\to 5p\,\,^2P_{1/2} transition we find ν88−ν84=−828(4)\nu_{88}-\nu_{84}=-828(4) MHz and ν88−ν86=−402(2)\nu_{88}-\nu_{86}=-402(2) MHz. These results provide more data for stringent tests of theoretical calculations of the isotope shifts of alkali-metal-like atoms. Moreover, they simplify the identification and the addressing of Sr+^+ isotopes for ion frequency standards or quantum-information-processing applications in the case of multi-isotope ion strings.Comment: 19 pages; 5 figures; accepted on Phys. Rev. A (http://pra.aps.org/

    Pre-Processing of Degraded Printed Documents by Non-Local Means and Total Variation

    Get PDF
    We compare in this study two image restoration approaches for the pre-processing of printed documents: namely the Non-local Means filter and a total variation minimization approach. We apply these two ap- proaches to printed document sets from various periods, and we evaluate their effectiveness through character recognition performance using an open source OCR. Our results show that for each document set, one or both pre-processing methods improve character recog- nition accuracy over recognition without preprocessing. Higher accuracies are obtained with Non-local Means when characters have a low level of degradation since they can be restored by similar neighboring parts of non-degraded characters. The Total Variation approach is more effective when characters are highly degraded and can only be restored through modeling instead of using neighboring data
    • …
    corecore