937 research outputs found

    Non-Contact Vibration Monitoring of Power Transmission Belts Through Electrostatic Sensing

    Get PDF
    On-line vibration monitoring plays an important role in the fault diagnosis and prognosis of industrial belt drive systems. This paper presents a novel measurement technique based on electrostatic sensing to monitor the transverse vibration of power transmission belts in an on-line, continuous, and non-contact manner. The measurement system works on the principle that variations in the distance between a strip-shaped electrode and the naturally electrified dielectric belt give rise to a fluctuating current output. The response of the sensor to a belt moving both axially and transversely is numerically calculated through finite-element modeling. Based on the sensing characteristics of the sensor, the transverse velocity of the belt is characterized through the spectral analysis of the sensor signal. Experiments were conducted on a two-pulley belt drive system to verify the validity of the sensing technique. The belt vibration at different axial speeds was measured and analyzed. The results show that the belt vibrates at well-separated modal frequencies that increase with the axial speed. A closer distance between the electrode and the belt makes higher order vibration modes identifiable, but also leads to severer signal distortion that produces higher order harmonics in the signal. On-line vibration monitoring plays an important role in the fault diagnosis and prognosis of industrial belt drive systems. This paper presents a novel measurement technique based on electrostatic sensing to monitor the transverse vibration of power transmission belts in an on-line, continuous, and non-contact manner. The measurement system works on the principle that variations in the distance between a strip-shaped electrode and the naturally electrified dielectric belt give rise to a fluctuating current output. The response of the sensor to a belt moving both axially and transversely is numerically calculated through finite-element modeling. Based on the sensing characteristics of the sensor, the transverse velocity of the belt is characterized through the spectral analysis of the sensor signal. Experiments were conducted on a two-pulley belt drive system to verify the validity of the sensing technique. The belt vibration at different axial speeds was measured and analyzed. The results show that the belt vibrates at well-separated modal frequencies that increase with the axial speed. A closer distance between the electrode and the belt makes higher order vibration modes identifiable, but also leads to severer signal distortion that produces higher order harmonics in the signal

    SIFT Saliency Analysis for Matching Repetitive Structures

    Get PDF
    The ambiguity resulting from repetitive structures in a scene presents a major challenge for image matching. This paper proposes a matching method based on SIFT feature saliency analysis to achieve robust feature matching between images with repetitive structures. The feature saliency within the reference image is estimated by analyzing feature stability and dissimilarity via Monte-Carlo simulation. In the proposed method, feature matching is performed only within the region of interest to reduce the ambiguity caused by repetitive structures. The experimental results demonstrate the efficiency and robustness of the proposed method, especially in the presence of respective structures

    Radial Vibration Measurement of Rotary Shafts through Electrostatic Sensing and Hilbert-Huang Transform

    Get PDF
    Radial vibration measurement of rotary shafts plays a significant part in condition monitoring and fault diagnosis of rotating machinery. This paper presents a novel method for radial vibration measurement through electrostatic sensing and HHT (Hilbert-Huang Transform) signal processing. The foundational characteristics of the electrostatic sensor in the vicinity of a drifting shaft are studied through Finite Element Modelling. Experimental tests were conducted on a purpose-built test rig to characterize the operating condition of the rotor at different rotational speeds (400 rpm and 600 rpm). A normal working shaft and an eccentric shaft were tested and the output signals from the electrostatic sensors were analyzed. Through empirical mode decomposition (EMD) on the electrostatic signals, the intrinsic mode functions (IMF) including the vibration information of the shaft are identified and further analyzed in the time-frequency domain. Experimental results suggest that the electrostatic sensing technique in conjunction with HHT provides a simple and cost-effective approach to radial vibration measurement of rotary shafts

    On-line Continuous Measurement of the Operating Deflection Shape of Power Transmission Belts Through Electrostatic Sensing

    Get PDF
    The measurement of the operating deflection shape (ODS) of power transmission belts is of great importance for the fault diagnosis and prognosis of industrial belt drive systems. This paper presents a novel method based on an electrostatic sensor array to measure the ODS of a belt moving both axially and transversely. Finite element simulations are performed to study the sensing characteristics of a strip-shaped electrode and the results reveal that the transverse velocity determines the sensor signal. Construction of the ODS is achieved in the frequency domain using the ODS frequency response function. Experiments conducted on a purpose-built test rig show that the belt vibrates at resonant frequencies that are well separated and identifiable using a peak picking method. The ODSs for different vibration modes exhibit similar deformation patterns and the axial motion of the belt determines that the ODSs propagate along the belt length, rather than stay fixed in space

    Simultaneous Measurement of Belt Speed and Vibration Through Electrostatic Sensing and Data Fusion

    Get PDF
    Accurate and reliable measurement of belt speed and vibration is of great importance in a range of industries. This paper presents a feasibility study of using an electrostatic sensor array and signal processing algorithms for the simultaneous measurement of belt speed and vibration in an online, continuous manner. The design, implementation, and assessment of an experimental system based on this concept are presented. In comparison with existing techniques, the electrostatic sensing method has the advantages of non-contact and simultaneous measurement, low cost, simple structure, and easy installation. The characteristics of electrostatic sensors are studied through finite-element modeling using a point charge moving in the sensing zone of the electrode. The sensor array is arranged in a 2 × 3 matrix, with the belt running between two rows of three identical sensing elements. The three signals in a row are cross correlated for speed calculation, and the results are then fused to give a final measurement. The vibration modes of the belt are identified by fusing the normalized spectra of vertically paired sensor signals. Experiments conducted on a two-pulley belt-driven rig show that the system can measure the belt speed with a relative error within ±2% over the range 2-10 m/s. More accurate and repeatable speed measurements are achieved for higher belt speeds and a shorter distance between the electrode and the belt. It is found that a stretched belt vibrates at the harmonics of the belt pass frequency and hence agrees the expected vibration characteristics

    Efficacy of EGFR-TKI therapy in patients with brain metastases from non-small-cell lung cancer: A metaanalysis

    Get PDF
    Purpose: This meta-analysis aimed to systematically evaluate the efficacy of tyrosine kinase inhibitors of epidermal growth factor receptor (EGFR-TKIs) for patients with brain metastases (BM) from nonsmall- cell lung cancer (NSCLC), and to compare this treatment modality to chemotherapy or radiotherapy.Methods: PubMed, EMBASE (OvidSP), the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science and ASCO Annual Meeting Abstracts were searched. Controlled clinical studies that compared the efficacy of EGFR-TKIs with chemotherapy or radiotherapy for NSCLC patients with BM were included in the analysis. Efficacy indicators included overall survival (OS), local progression-free survival (LPFS) and objective response rate (ORR).Results: The final sample consisted of 24,637 NSCLC patients with BM from 11 clinical studies. In primary efficacy analysis, it was found that EGFR-TKIs were significantly superior to chemotherapy or radiotherapy in terms of ORR (odds ratio (OR) = 2.10, p = 0.035), OS (hazard ratio (HR) = 0.78, p = 0.011) and LPFS (HR = 0.60, p < 0.001).Conclusion: Among the patients with BM from NSCLC, EGFR-TKIs exhibit a therapeutic advantage over chemotherapy or radiotherapy, which is reflected in the elevation of ORR and improvement in OS and LPFS.Keywords: Brain metastasis, Non-small-cell lung cancer (NSCLC), Protein kinase Inhibitors, Epidermal growth factor, Meta-analysi
    • …
    corecore