57 research outputs found
Impact of Cardiovascular Risk Factors on Carotid Intima-Media Thickness and Degree of Severity: A Cross-Sectional Study
OBJECTIVE: Age, hypertension, dyslipidemia and diabetes are common cardiovascular risk factors (CVRFs) that contribute to the development of atherosclerosis in cardiovascular system including carotid artery disease. However, the impact of these risk factors on the increased carotid intima-media thickness (cIMT) and degree of carotid severity remains to be further clarified. This study aims to evaluate the relationship between CVRFs and degree of carotid severity and cIMT in high-risk subjects. METHODS: Four thousand and three hundred ninety-four subjects with one or more risk factors were retrospectively reviewed in this study. Patients were divided into different groups based on age, the type and quantity of CVRFs. cIMT and degree of carotid artery stenosis were measured and analyzed based on carotid ultrasound imaging with findings compared to the CVRFs to determine the correlation between these variables. RESULTS: Aging was significantly associated with degree of severity (P < 0.05) and cIMT was significantly increased with age (P < 0.05). Individual CVRF analysis shows that hypertension was more related to the degree of severity than dyslipidemia and diabetes with corresponding abnormal cIMT rates being 79.39%, 72.98% and 32.37%, respectively. The prevalence of carotid atherosclerosis were 20.06%, 22.88% and 28.63%, respectively corresponding to patients with zero, one and more than one chronic diseases. The percentage of abnormal cIMT in hypertensive patient group with dyslipidemia is significantly higher than the other groups (P< 0.05). CONCLUSIONS: This study shows a direct correlation between the degree of carotid severity and cIMT and cardiovascular risk factors, especially with age and hypertension. Carotid atherosclerosis is closely related to the number of cardiovascular risk factors
Carbon dots-based dual-emission ratiometric fluorescence sensor for dopamine detection
The detection of Dopamine (DA) is significant for disease surveillance and prevention. However, the development of the precise and simple detection techniques is still at a preliminary stage due to their high tester requirements, time-consuming process, and low accuracy. In this work, we present a novel dual-emission ratiometric fluorescence sensing system based on a hybrid of carbon dots (CDs) and 7-amino-4-methylcoumarin (AMC) to quickly monitor the DA concentration. Linked via amide bonds, the CDs and AMC offered dual-emissions with peaks located at 455 and 505 nm, respectively, under a single excitation wavelength of 300 nm. Attributed to the fluorescence of the CDs and AMC in the nanohybrid system can be quenched by DA, the concentration of DA could be quantitatively detected by monitoring the ratiometric ratio change in fluorescent intensity. More importantly, the CDs-AMC-based dual-emission ratiometric fluorescence sensing system demonstrated a remarkable linear relationship in the range of 0–33.6 μM to detection of DA, and a low detection limit of 5.67 nM. Additionally, this sensor successfully applied to the detection of DA in real samples. Therefore, the ratiometric fluorescence sensing system may become promising to find potential applications in biomedical dopamine detection
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Arsenic Distribution and Speciation in Antigorite-Rich Rocks from Vermont, USA
Summary
Serpentinites from the northern Vermont were examined for the distribution and abundance of As. XRD and electron microprobe showed the samples are composed of antigorite, chromite, magnetite, and carbonate minerals (magnesite, dolomite, calcite). The concentration in As when the samples were dissolved in H3PO4 was 10% of the concentration in As when the samples were dissolved in concentrated HF/HNO3, suggesting that As is mainly incorporated in the structure of antigorite. X-ray absorption near-edge structure spectra showed that the As is As(III) in the samples. Extended X-ray absorption fine structure spectra suggested that the As has a tetrahedral coordination and is located in the Si-site in serpentine
Development of Morphology Analysis-Based Technology Roadmap Considering Layer Expansion Paths: Application of TRIZ and Text Mining
Morphology analysis (MA)-based roadmapping has been considered an effective means to support the process of technology innovation in a business environment. However, previous research on MA-based roadmaps has commonly focused on the process of developing existing technology roadmaps (TRMs), while the paths of layer expansion for seeking new opportunities is rarely a focus. Thus, the aim of this research is to develop MA-based TRMs by utilizing MA to describe the characteristics of the technology and product layers in the TRMs and apply the improved theory of inventive problem solving (TRIZ) inventive principles to establish innovation paths for new opportunities with the aid of text mining tools. This study suggests using a morphological matrix to construct existing TRMs by calculating the correlations among different technology and product nodes and two sparse generative topographic mapping (SGTM)-based maps to discover new technology and product opportunities by identifying technology and product development trends and innovation elements in sparse areas, which is the objective of simplifying TRIZ application. To illustrate the performance of the proposed approach, a case study is conducted using patents and product manuals for underwater vehicles, which are becoming popular high-tech and secure tools to explore sub-sea resources. This approach contributes by suggesting a semi-autonomous and systematic procedure to extend the existing MA-based TRM and simplifying TRIZ application according to the occurrence frequency of the keywords
Optimal Pricing Strategy of Electric Vehicle Charging Station for Promoting Green Behavior Based on Time and Space Dimensions
Considering that the charging behaviors of users of electric vehicles (EVs) (including charging time and charging location) are random and uncertain and that the disorderly charging of EVs brings new challenges to the power grid, this paper proposes an optimal electricity pricing strategy for EVs based on region division and time division. Firstly, by comparing the number of EVs and charging stations in different districts of a city, the demand ratio of charging stations per unit is calculated. Secondly, according to the demand price function and the principle of profit maximization, the charging price between different districts of a city is optimized to guide users to charge in districts with more abundant charging stations. Then, based on the results of the zonal pricing strategy, the time-of-use (TOU) pricing strategy in different districts is discussed. In the TOU pricing model, consumer satisfaction, the profit of power grid enterprises, and the load variance of the power grid are considered comprehensively. Taking the optimization of the comprehensive index as the objective function, the TOU pricing optimization model of EVs is constructed. Finally, the nondominated sorting genetic algorithm (NSGA-II) is introduced to solve the above optimization problems. The specific data of EVs in a municipality directly under the Central Government are taken as examples for this analysis. The empirical results demonstrate that the peak-to-valley ratio of a certain day in the city is reduced from 56.8% to 43% by using the optimal pricing strategy, which further smooth the load curve and alleviates the impact of load fluctuation. To a certain extent, the problem caused by the uneven distribution of electric vehicles and charging stations has been optimized. An orderly and reasonable electricity pricing strategy can guide users to adjust charging habits, to ensure grid security, and to ensure the economic benefits of all parties
Research on the Economic Benefit Evaluation of Combined Heat and Power (CHP) Technical Renovation Projects Based on the Improved Factor Analysis and Incremental Method in China
With the increasingly prominent problems of resources and environment, thermal power enterprises in China are facing more severe challenges. To improve energy efficiency, a great number of thermal power enterprises implement the technical renovation of equipment. However, current methods cannot meet the needs of scientific and effective evaluations. In this context, the internal rate of return (IRR) is used as the main index to evaluate the economic benefits of the technical renovation of combined heat and power (CHP) plants. In order to improve the accuracy of the economic benefit evaluation results, the incremental cash flow is calculated through the incremental method, which is based on the existence and non-existence method, and the improved factor analysis method is utilized to eliminate the influence of price factors from markets that have no direct and definite relationship with the technical renovation. Then, the evaluation method is validated by taking a CHP technical renovation project in B city of China as an example. By comparing with other methods, the results show that the IRRs calculated by different methods are quite different, and the difference between the maximum and the minimum can reach 69.95%. The result of the method proposed in this paper is more reasonable and reliable and can effectively evaluate the economic benefits of CHP technical renovation projects
EVALUATION SYSTEM FOR LEAN KNOWLEDGE MANAGEMENT ABILITY BASED ON IMPROVED GRAY CORRELATION ANALYSIS
The efficient implementation of lean production requires an accurate understanding of effective lean knowledge management. However, the existing literature lacks research on evaluating lean knowledge management abilities. To accurately measure lean knowledge management levels, this study established an evaluation index system, selected an improved gray correlation analysis method to determine index weights at all levels, and built a comprehensive evaluation model based on lean knowledge acquisition, integration, and application. Descriptive statistics were calculated from a questionnaire on the current situation of knowledge management in a lean implementation process. By comprehensively evaluating the lean knowledge management abilities of the 28 surveyed enterprises, it was determined that knowledge management can promote improvements therein. The research results provide a decision-making basis for enterprises to formulate a lean implementation strategy
- …