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Abstract 

The detection of Dopamine (DA) is significant for disease surveillance and 

prevention. However, the development of the precise and simple detection techniques is 

still at a preliminary stage due to their high tester requirements, time-consuming process, 

and low accuracy. In this work, we present a novel dual-emission ratiometric 

fluorescence sensing system based on a hybrid of carbon dots (CDs) and 7-amino-4-

methylcoumarin (AMC) to quickly monitor the DA concentration. Linked via amide 

bonds, the CDs and AMC offered dual-emissions with peaks located at 455 and 505 nm, 

respectively, under a single excitation wavelength of 300 nm. Attributed to the 

fluorescence of the CDs and AMC in the nanohybrid system can be quenched by DA, 

the concentration of DA could be quantitatively detected by monitoring the ratiometric 

ratio change in fluorescent intensity. More importantly, the CDs-AMC-based dual-

emission ratiometric fluorescence sensing system demonstrated a remarkable linear 

relationship in the range of 0-33.6 μM to detection of DA, and a low detection limit of 

5.67 nM. Additionally, this sensor successfully applied to the detection of DA in real 

samples. Therefore, the ratiometric fluorescence sensing system may become promising 

to find potential applications in biomedical dopamine detection. 

 

Keywords: Ratiometric fluorescence; Carbon dots; Dopamine; Biosensor 
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1. Introduction 

Dopamine (DA), an important neurotransmitter, is involved in many biological 

processes, such as the central nervous, hormonal and cardiovascular systems. Many 

studies have shown that abnormal DA concentrations may result in serious diseases 

such as Huntington's, Parkinson's and Alzheimer's diseases and schizophrenia [1-4]. 

Therefore, the accurate detection of DA has great significance for diagnosing the above 

diseases. Various methods such as chromatography, ultraviolet spectrophotometry, 

electrochemistry, chemiluminescence and enzyme methods have been adopted to solve 

this problem [5-9], but have shown many defects, such as high requirements for testers, 

time-consuming detection, low accuracy and so on. There is substantial demand for 

developing a method that is easy to operate, efficient and sensitive for dopamine 

detection. 

Fluorescence-based sensors have been used to detect various target analytes, 

because of their outstanding advantages, including simple operation, fast testing, low 

cost and high sensitivity. However, fluorescence emission intensity is normally 

influenced by many factors, such as instrument efficiency, probe concentration and 

environmental interference [10-12], which will affect the analysis results in quantitative 

testing. Ratiometric fluorescence is a method where changes in the ratio of two 

fluorescence intensities (FL) with respect to variations in the target analyte are used to 

quantitatively detect the target analyte, which can effectively eliminate background 

signal and environmental interference, resulting in high sensitivity and selectivity [13-

15]. 

Carbon dots (CDs), fluorescent materials discovered in 2004, have attracted 

immense attention in recent years due to their facile preparation, low cost, good water-
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solubility, excellent biocompatibility and low toxicity. The rich oxygen-containing 

structure on the surface of CDs not only enables their good dispersion in aqueous 

solution but also be promising to find potential applications in further modifications 

[16-20]. To date, different strategies including hydrothermal, chemical oxidation, 

electrochemical oxidation and laser ablation methods have been developed to synthesize 

a variety of CDs [21-24]. Traditionally, CDs have been extensively used in bioimaging 

detection, photocatalysis, optoelectronic devices and so on [25-30]. Recently, some 

researchers have tried to prepare ratiometric fluorescent probes for chemical sensing by 

combining CDs with other fluorescent materials to improve detection sensitivity [31-

34]. Moon-Jin Cho et al [32]. coupled CDs and rhodamine to prepare a ratiometric 

probe for glucose detection. Chen et al.[35] reported a ratiometric fluorescent probe 

synthesized from the fluorescent dye ethidium bromide and CDs for perfluorooctane 

sulfonic acid (PFOS) detection. He et al.[15] fabricated a ratiometric fluorescent probe 

based on a CDs-gold nanocluster hybrid for the reliable sensing of dopamine.  

Here, a novel ratiometric fluorescent probe, combining CDs and 7-amino-4-

methylcoumarin (AMC), is proposed to form a CDs-AMC nanohybrid (CDC) for the 

detection of DA. As shown in Scheme. 1, the dual-emission fluorescence CDC with 

emission peaks located at 455 and 505 nm was synthesized via covalently linking the 

CDs and AMC. Besides, to completely remove the free AMC from the complex system, 

the samples were sulfonated to improve the water-solubility of AMC. Attributed to the 

unique configuration, the concentration of DA can be monitored quickly, by analyzing 

the relationship between the concentration and FL ratio. What’s more, the results 

revealed good selectivity of the CDC ratiometric fluorescence sensor to DA over other 

metal ions and amino acids.  
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Scheme 1. Schematic diagram of the dual-emission ratiometric fluorescence sensor formation 

2. Experimental 

2.1. Instruments and measurements 

Transmission electron microscopy (TEM) was performed using a Tecnai G2 F20 

S-TWIN transmission electron microscope (FEI, USA) operated at an accelerating 

voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were made 

on an ESCALAB250Xi spectrometer (ThermoFisher Scientific). Fourier transform 

infrared (FT-IR) spectra were collected with the aid of a Thermo Scientific FT-IR 

spectrophotometer (Nicolet iS50 FT-IR). UV-vis absorption spectra were recorded with 

Shimadzu UV-1800 spectrometer (Shimadzu Inc., Kyoto, Japan). Fluorescence 

measurements were obtained by using a Hitachi F-4700 fluorescence spectrometer 

(Hitachi. Ltd., Japan).  

 

2.2. Materials  
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Dopamine hydrochloride, cysteine (Cys), glycine (Gly), alanine (Ala), glutathione 

(Gsh), 7-amino-4-methylcoumarin (AMC), glutamic acid (Glu), tyrosine (Tyr) and uric 

acid were purchased from Aldrich Chemical. Epinephrine, Norepinephrine (NE), and 

tyrosinase (TYR) were purchased from Shanghai yuanye Bio-Technology Co., Ltd. L-

ascorbic acid (AA) and all other reagents were of analytical reagent grade. Nanopure 

water (18.2 MΩ; Millipore Co., USA) was used throughout the experiment. 

 

2.3 Synthesis of CDs 

First, 0.4 g of carbon fiber powder was added to 30 mL of a mixed solution of 

sulfuric acid and nitric acid (VH2SO4:VHNO3=1:3), and the mixed sample was kept boiled 

under reflux for 4 hours, then after the reaction was over, the sample was collected and 

neutralized with NaHCO3 to bring the pH to approximately 7. The sample was then 

filtered to remove the formed salt, and the filtrate was collected for further dialyzed. 

Finally, the sample was ultrafiltered and the fractions equivalent to <3 kDa was 

investigated in our work. 

 

2.4 Preparation of the CDC nanohybrid[36] 

5 mg of CDs and 1 mL of thionyl chloride were added to a round bottom flask and 

heated to reflux in an acetonitrile solvent. After removing all the liquid, anhydrous 

acetonitrile was added to the flask to redisperse the sample, and the sample was filtered 

using an oily filter. The reaction was stirred for 12 hours with 0.5 mg of AMC. After the 

reaction was completed, the sample was evaporated to remove the solvent and 

redispersed in water for further dialyzed to obtain the CDC nanohybrid. 
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2.5 Purified CDC nanohybrid 

1 mL of CDC solution and 1 g of 1, 3-propane sultone were added to a round 

bottom flask, then 10 mL of 1, 4-dioxane solvent was added for reaction 24 hours at 40 

°C. After the reaction was completed, the sample was evaporated to remove the 

solvent，the resulting sample was dispersed in water and extracted with ethyl acetate to 

remove free AMC. Then the sample was evaporated to remove the solvent and 

redispersed in water for further dialyzed to obtain the purified CDC nanohybrid. 

2.6 Detection of DA with the ratiometric sensor 

600 μL of CDC (0.1 mg/mL) solutions coupled with 30 μL of different 

concentrations of DA were mixed thoroughly at room temperature. The final 

concentrations of DA were 0, 2.4, 4.8, 9.6, 14.4, 19.2, 24, 33.6, 48, 72, 96, 144, 192, 

240, 720, 960, 1200 and 2400 μM. Fluorescence spectra were then obtained in the 

wavelength range of 320–580 nm with excitation at 300 nm.  The selectivity of this 

sensing system for DA was assessed using glucose, L-ascorbic acid, K
+
, Na

+
, urea, uric 

acid, TRY and other natural amino acids, such as Cys, Ala, Gly, Try, Glu and Gsh. 

2.7 Detection of DA in real samples 

The serum was diluted 50 times with a PBS buffer solution (pH 6.8, 0.01 M). 

Different concentrations of DA was introduced to prepare the spiked samples. 

3. Results and discussion 

3.1 Synthesis and characterization of the CDC nanohybrid 
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Fig.1 (A) TEM image of carbon dots, (B) corresponding size distribution of carbon dots, (C) C 

1s high-resolution XPS spectrum of carbon dots, (D) XRD spectrum of carbon dots. 

A chemical oxidation method was used to prepare the CDs, which is suitable for 

the mass production of CDs. However, further separation and purification are required 

because of nonuniformity. As shown in Fig. 1A, it is obvious from the TEM image that 

the prepared <3k CDs exhibit a regular spherical shape with an average particle 

diameter of 2.2 ± 0.1 nm (Fig. 1B). Their corresponding high-resolution X-ray 

photoelectron spectroscopy (XPS) as shown in Fig. 1C illustrates the spectrum of the 

CDs can be fitted by three peaks located at 284.8, 286.3 and 288.4 eV, corresponding to 

C=C/C–C, C–O and C=O bonds, respectively[37], indicating that the surface of the CDs 

is rich in oxygen-containing functional groups including hydroxyl groups, carbonyl 

groups and carboxyl groups. Furthermore, the XRD spectrum of CDs exhibits obvious 

diffraction peaks at 25° and 42°, corresponding to plane 002 and plane 100 of the facets 
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graphite, respectively [38]. According to Fig. S1 and Fig. S2, the fluorescence quantum 

yield of the CDs was 2.2% (using fluorescein as a reference). 

    

Fig. 2 (A) Fluorescent emission spectra (λex=300 nm) of (a) CDs, (b) AMC, (c) CDC 

nanohybrid, (B) Fluorescent emission spectra of AMC (black line) and absorbance of CDs (red 

line).  

As shown in the FT-IR spectra (Fig. S3), the bands at 1685 cm
−1

 and 1530 cm
−1

 are 

ascribed to the amide I and amide II bands, which proves the successful conjugation of 

the CDs with the AMC through the existence of amide bond between carboxyl groups 

and amino groups[36]. Fig. S4 illustrates the UV-vis spectra of the CDs, AMC and 

CDC nanohybrid. From the spectra, it can be found that the CDC nanohybrid has two 

absorbance peaks, which correspond to the absorption peaks of CDs and AMC. This 

indicates that the AMC was successfully coupled to CDs. Moreover, the fluorescence 

spectra of the CDs, AMC and CDC nanohybrid under an excitation of 300 nm are 

illustrated in Fig. 2A. The CDC nanohybrid shows dual emission at 455 nm and 505 nm 

attributable to CDs and AMC, respectively. Compared to the single CDs (510 nm) and 

AMC (450 nm) both produced a little shift, indicating that the obtained CDC 

nanohybrid fluorescent spectrum is not the resulted of the physical mixing between CDs 

and AMC. Therefore, the results of the FT-IR spectrum, UV-vis spectrum and 
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fluorescent characterization, simultaneously demonstrate the successful preparation of 

the CDC nanohybrid. 

Fig. S5 shows the fluorescence spectra of the CDC nanohybrid at different 

excitation wavelengths. Under 300 nm excitation, the emission peaks of both CDs and 

AMC can be observed at the same time. Therefore, all experiments were performed 

with an excitation wavelength of 300 nm. From Fig. 2B, we can see that there is a 

spectral overlap between the emission of AMC and the absorption of CDs, which 

theoretically demonstrates a slight fluorescence resonance energy transfer (FRET) from 

the CDs to AMC [39]. Moreover, according to previous research, FRET occurs when 

the distance between the donor and acceptor is less than 10 nm[15]. In our experiment, 

the CDs (acceptor) and AMC (donor) were conjugated together via amide bonds, so the 

distance between the components was sufficient to perform FRET. 

3.2 Possible sensing mechanism  

In neutral conditions, DA behaves like a positively charged particle with –NH3
+
 

[39], while CDs behave as negatively charged particles due to their rich oxygen-

containing functional groups on the surface, such as hydroxyl and carboxyl groups. 

Thus, CDs and DA can be attached by noncovalent interactions, including electrostatic 

interactions, π-π stacking, and hydrogen bonding[40, 41]. Therefore, the quenching 

effect may be caused by photoinduced electron transfer. When the amine and hydroxyl 

functional groups of DA interact with the oxygen-containing groups on the surface of 

CDs, the lone pair of electrons in the oxygen-containing group can undergo 

intramolecular charge transfer or photoinduced electron transfer, resulting in a decrease 

in the emission amount and further quenching the CDs fluorescence [42]. To verify this 

conclusion, the fluorescence lifetime of the samples before and after the addition of DA 
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was investigated. As Fig. S6 shown, the fluorescence lifetime of CDC nanohybrid 

decreased after the addition of DA, indicating that dynamic quenching contributes to the 

CDC nanohybrid towards DA detection. Moreover, it can be seen from Fig. S7 that 

there is no overlap between the absorption spectrum of DA and the emission spectrum 

of CDC nanohybrid, so fluorescence resonance energy transfer (FRET) mechanism can 

be excluded. Thus, the quenching effect was more likely caused by photoinduced 

electron transfer. 

3.2 Detection of DA with the ratiometric sensor 

 

Fig. 3 (A) Fluorescent emission spectra (λex=300 nm) of CDC nanohybrid with different 

concentrations of DA. (B) The linear relationship between the ratiometric fluorescence intensity 

(I505/I405) and various concentrations of DA (0-33.6 μM), (inset) graph showing the linear 

relations between I505/I405 and the concentrations of DA. 

The detection of DA by the CDC nanohybrid system was performed in a PBS 

solution (pH 6.8, 0.01 M), and different concentrations of DA were used to study the 

sensitivity of the nanohybrid sensor. This reaction is particularly quick and can be 

completed in less than 10 seconds. As shown in Fig. 3A, the excitation wavelength was 

300 nm, and when the concentration of DA increased, the fluorescence of the CDs and 

AMC in the nanohybrid system could be quenched by DA to different degrees. When 
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the DA concentration increasing to 2400 μM, the CDs fluorescence at 505 nm was 

almost completely quenched. As shown in Fig. S8, according to the degree of 

quenching by adjusting the concentration of DA, the CDC nanohybrid showed different 

colors under a UV-lamp (λex = 360 nm), when increasing the DA concentration, the 

color of the CDC nanohybrid would change from dark yellow to light yellow, indicating 

that the CDC nanohybrid could enable naked-eye visualization DA detection 

qualitatively. Fig. 3B shows a plot of the FL ratio (I505/I455) against the DA 

concentration. When the concentration of DA is in the range of 0-33.6 μM, the FL ratio 

(I505/I455) and DA concentration have a good linear relationship, the linear regression 

equation is I505/I455 = 1.02142-0.00419 [CDA] (R
2
=0.992). The limit of detection (LOD), 

defined as 3 times the standard deviation of background [12, 34, 43], was calculated as 

5.67 nM. As Table S1 reveals, compared with other methods, this sensing platform has 

obvious advantages in detection sensitivity. Moreover, the ratiometric fluorescence 

probe has excellent accuracy compared with a single fluorescent probe, which can 

effectively eliminate background signal and environmental interference, resulting in 

high sensitivity and selectivity. 

3.4 Selectivity and interference studies 

The selectivity of fluorescent probes is one of the key parameters used to evaluate 

the feasibility of a sensor system. To investigate the specificity of the CDC nanohybrid 

probe, we tested some potentially interfering substances (100 mM, Na
+
, K

+
, AA, Cys, 

Ala, Glu, Gly, Gsh, Try, urea, uric acid and glucose, 10 mM, epinephrine and NE, 1 

mg/mL, TRY) under the same conditions. As shown in Fig. 4A, no significant 

difference between the black bars group and the interference bars group was observed 

when the DA concentration was zero, indicating that the interfering substances have no 
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significant effect on the sensing system. When DA and potential interferences coexist, 

even if the concentration of various substances is more than 5 times that of DA, their 

relative error in DA detection is also small. Moreover, Fig. 4B shows a photograph of 

different interfering substances added to the nanohybrid under a UV-lamp (λ ex=360 

nm). The FL of the nanohybrid is clearly not affected by other interferences except DA 

compared with the black bars group. Therefore, the prepared CDC nanohybrid probe 

displays high selectivity for DA determination. 

 

Fig. 4 (A) The interference studies of the CDC nanohybrid sensor toward DA. The black bars 

represent the fluorescence response of the sensor to the different interfering substances. The red 

bars represent the fluorescence of the aforementioned solution upon subsequent addition of DA. 

(B) FL images of the aqueous suspension of CDC nanohybrid with a different substances, 

excited by a 365 nm of UV-lamp. 

3.5 Detection of DA in real samples 

To evaluate the feasibility of the constructed CDC nanohybrid sensor platform for  

detecting DA in real samples. The concentration of DA in human serum samples was 

measured by the standard method. The results are displayed in Table. 1. The recovery 

for the three different samples was 102-105 %, and the RSDs ≤ 1.8 %. The above results 

imply that this sensor platform has excellent potential for sensing DA in real serum 

samples. 
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Table.1 Detection of DA in real samples 

sample Spiked (μM) Measured (μM) Recovery (%) RSD (%, n=3) 

1 14 14.69±0.27 105 1.8 

2 16 16.42±0.19 103 1.2 

3 25 25.46±0.32 102 1.3 

4. Conclusion 

In summary, a novel CDC nanohybrid ratiometric fluorescent probe prepared by 

covalently linking CDs and AMC through amide bonds, which was successfully applied 

in on-site naked-eye detection of DA. Specifically, due to the FL of AMC and CDs is 

quenched to different degrees when adjusting the DA concentration, a significant color 

change (dark yellow-light yellow) can be easily observed by the naked eye under a UV-

lamp. This CDC nanohybrid probe showed excellent sensitivity and selectivity for the 

detection of DA with a detection limit as low as 5.67 nM. Compared with previously 

reported methods, our nanohybrid probe has several important advantages, such as easy 

fabrication (less than 10 s), rapid detection, low interference and reliable results. 

Additionally, such CDC nanohybrid probe does not contain toxic semiconductor 

quantum dots or organic solvents and is therefore more environmentally friendly. 
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Highlights: 
1. A novel dual-emission ratiometric fluorescence sensing system was 

developed based on a carbon dots-AMC hybrid. 

2. The probe provided a method for the rapid detection of dopamine. 

3. The ratiometric fluorescent probe exhibited excellent sensitivity and 

selectivity. 
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