276 research outputs found

    Simulating broken PT\cal PT-symmetric Hamiltonian systems by weak measurement

    Full text link
    By embedding a PT\cal PT-symmetric (pseudo-Hermitian) system into a large Hermitian one, we disclose the relations between PT\cal{PT}-symmetric Hamiltonians and weak measurement theory. We show that the amplification effect in weak measurement on a conventional quantum system can be used to effectively simulate a local broken PT\cal PT-symmetric Hamiltonian system, with the pre-selected state in the PT\cal PT-symmetric Hamiltonian system and its post-selected state resident in the dilated Hamiltonian system.Comment: 4 pages; with Supplemental Materia

    Subdomain Model for Predicting Armature Reaction Field of Dual-Stator Consequent-Pole PM Machines Accounting for Tooth-Tips

    Get PDF
    International audienceThis paper presents an exact analytical subdomain model of dual-stator consequent-pole permanent-magnet (DSCPPM) machines accounting for tooth-tips, which can accurately predict the armature reaction field distribution in DSCPPM machines. In the proposed subdomain model, the field domain is composed of four types of sub-regions, viz. magnets, outer/inner air gaps, slots and slot openings. The analytical expressions of vector potential in each sub-region are determined by boundary and interface conditions. In comparison to the analytically predicted results, the corresponding flux density field distributions computed by finite element (FE) method are analyzed, which confirms the excellent accuracy of the developed subdomain model

    MicroRNA-595 promotes osteogenic differentiation of bone marrow mesenchymal stem cells by targeting HMGA2

    Get PDF
    Purpose: To investigate the effect of miR-595 on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).Methods: Human BMSCs were osteogenically differentiated, and protein expression of alkaline phosphatase (ALP), osteocalcin (OCN), and Runt-related transcription factor 2 (RUNX2) were evaluated by western blot. Expression of miR-595 was measured by quantitative reverse transcription (qRT-PCR). The effect of miR-595 on viability of BMSCs was determined by MTT assay. Osteogenic differentiation of BMSCs was assessed by ALP and Alizarin red S (ARS) staining. The target gene of miR-595 was predicted by TargetScan analysis and validated by luciferase activity assay.Results: MiR-595 expression was higher in osteogenically differentiated BMSCs than in undifferentiated BMSCs (p < 0.01). Osteogenic ALP, OCN, and RUNX2 were also upregulated (p < 0.01). MiR-595 expression increased the viability of BMSCs, mineralized bone matrix formation, and ALP activity. High mobility group AT-hook 2 (HMGA2) expression was lower in osteogenically differentiated BMSCs and was found to be a target of miR-595. Overexpression of HMGA2 attenuated the miR-595-induced increase in cell viability, ALP activity, mineralized bone matrix formation, and osteogenic gene expression in BMSCs.Conclusion: The miR-595/HMGA2 axis is involved in osteogenic differentiation of BMSCs suggesting that it is a promising therapeutic target for osteoporosis

    Stator Design Aspects for Permanent Magnet Super-conducting Wind Power Generators

    Get PDF
    This paper presents an electromagnetic design of a permanent magnet superconducting wind power generator with different stator teeth structures and armature winding arrangements. The main contribution of this paper is that a novel stator configuration is proposed, which is beneficial for superconducting machines. The topology of tapering poles makes it possible for the machine to carry larger current without severe magnetic saturation in the stator teeth. Meantime, the distributed arrangement of wires in the stator slot can reduce the ac loss in the same output power condition. Finite element analysis with commercial software is used to support these results

    Analytical Model of Electromagnetic Performance for Permanent-Magnet Vernier Machines Using Nonlinear Exact Conformal Model

    Get PDF
    This article investigates the air-gap field distribution of the permanent-magnet Vernier machine (PMVM) using a nonlinear exact conformal model (NECM) to account for slotting effect, flux modulation effect, and iron nonlinearity. The exact conformal model (ECM) based on the region of one-slot and one-flux-modulation-pole (OSECM) are introduced to show the effectiveness of the linear analytical model for PMVM. It can keep high calculation accuracy and significantly reduce the computational burden. Then, the NECM is developed from OSECM by introducing the equivalent saturation current into the air region and coil region. The lumped parameter magnetic circuit model (LPMCM) model is used to obtain the magnetic potential of the iron region and therefore calculate the equivalent saturation current. The NECM which combines LPMCM and OSECM can essentially improve the accuracy of the linear analytical model. The harmonic analysis of the air-gap field is performed to theoretically explain the component of electromagnetic torque. Both finite element model (FEM) simulation and test results are presented to validate the NECM

    Comparison of electromagnetic performance of scpm wind power generators with different topologies

    Get PDF
    This paper focuses on the comparison of electromagnetic performance of the superconducting permanent magnet (SCPM) generators with two different topologies. The torque capabilities of the two generators are first investigated. The peak torque is largely restricted by the material characteristics of the superconducting (SC) and the permanent magnet. The SCPM generators with iron-cored rotor and iron-cored stator topology (IRIST) is superior to the one with iron-cored rotor and air-cored stator topology in terms of torque capability. Furthermore, the flux density, line electromotive force, torque and its torque ripple, and the efficiency of the designed generators are evaluated by using numerical model. The simulation results confirm that IRIST has higher output torque and efficiency with the penalty of higher harmonics and torque ripples

    Nonlinear Analytical Modelling for Surface-Mounted Permanent Magnet Motors with Magnet Defect Fault

    Get PDF
    This paper analyzes magnet defect fault signature in the surface-mounted permanent magnet motor (SPMM) using nonlinear analytical model considering the influence of magnet shape and magnetization direction. Based on the surface current method and conformal mapping technique, the magnet defect equivalent current and equivalent nonlinearity current are proposed to represent the magnet defect. Accordingly, the performance of SPMM can be obtained. The proposed model has great potential to investigate SPMM with non-uniform magnet defect and gives theoretical basis for fault diagnosis. The extra sensing coil is added to measure the voltage waveforms, which can also be predicted using the nonlinear analytical model and shows the influence of magnet defect fault. Finally, the finite element analysis and experimental results verify the high accuracy of nonlinear analytical model

    Electromagnetic Analysis for Interior Permanent-Magnet Machine Using Hybrid Subdomain Model

    Get PDF
    This paper proposed a hybrid subdomain model (HSM) for calculating the magnetic field distribution of interior permanent-magnet (IPM) machine accounting for slotting effect, rotor saliency, and iron nonlinearity. In the constant permeability region, i.e., slots, slot-opening, and air-gap, three subdomains are introduced to represent their magnetic field. By applying the subdomains interface conditions and nonlinear boundary conditions, the analytical air-gap field solution can be obtained based on the governing Laplace and Poisson equation. For the iron region, the magnetic reluctance network (MRN) is proposed to account for rotor saliency iron and nonlinearity. The magnetic voltage source is introduced to represent the permanent-magnet (PM) while the air-gap flux source is used to replace the air-gap reluctance network, which is the key to guarantee the computational efficiency and high accuracy. The electromagnetic performances of both flat-shaped and V-shaped IPM machines are investigated to show the advantages of different IPM machine topologies analytically. The HSM predictions for both IPM machines are validated by finite-element (FE) analysis and experimental results
    corecore