103 research outputs found

    Inclined Substrate Deposition of Nanostructured TiO2 Thin Films for DSSC Application

    Get PDF
    Nanostructured TiO2 films were deposited onto Indium Tin Oxide (ITO) and glass substrates by dc reactive magnetron sputtering at different substrate inclination angles. The structural and optical properties of the deposited films were studied by X-ray diffraction, scanning electron microscopy and UV-Vis spectrophotometer, respectively. Dye-sensitized solar cells (DSSC) were assembled using these TiO2 films as photoelectrodes and the effect of the substrate inclination angle in the preparing process of TiO2 films on the DSSC conversion efficiency was studied.info:eu-repo/semantics/publishedVersio

    The effect of hydroxyl on dye-sensitized solar cells assembled with TiO2 nanorods

    Get PDF
    TiO2 nanorods have been prepared on ITO substrates by dc reactive magnetron sputtering technique. The hydroxyl groups have been introduced on the nanorods surface. The structure and the optical properties of these nanorods have been studied. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorods as photoelectrode. And the effect of the hydroxyl groups on the properties of the photoelectric conversion of the DSSCs has been studiedinfo:eu-repo/semantics/publishedVersio

    Combustion synthesis of Ce2LuO5.5:Eu phosphor nanopowders: structure, surface and luminescence investigations

    Get PDF
    The spherical shape, uniform size and small degree of agglomeration of the particles play crucial roles in promoting the practical applications of the phosphor powders. In this paper, the novel Eu3+ -doped cerium lutetium Ce2LuO5.5 composite nanopowders with a cubic fluorite structure were prepared via a typical solution combustion route, and their internal structure, surface morphology as well as luminescence properties were investigated. The Eu3+ could substitute in either Lu3+ or Ce4+ sites and the existence of oxygen vacancy was confirmed in the composite by X-ray diffraction and Raman spectra techniques. Without the addition of surfactant, most of the as-prepared particles were bound together, and the luminescence was very weak even after a sintering process. Assisted with appropriate polyvinyl alcohol (PVA) surfactant in the combustion reaction and a subsequent heat-treatment process, the bound-particles were evidently separated and seemed to be nearly spherical shape. The particle size could be controlled to 30–120 nm and the luminescence was enhanced by adjusting the subsequent sintering temperature. Excited with 466 nm blue light, the nanopowders exhibited characteristic 5D0 → 7FJ (J  =  0–4) emission transition of Eu3+ and showed enhanced red luminescence as Eu3+ occupied Ce4+ site rather than Lu3+ site. The maximum emission was obtained as 40 mol% Eu substitutes Ce in the composite. Due to the coincidence of 466 nm excitation light with the emission of InGaN chips in white light-emitting diodes, the surface-morphology improved Eu-doped Ce2LuO5.5 phosphor nanopowders have a potential application in solid state lighting fields.publishe

    Inhibition of ERK activation enhances the repair of double-stranded breaks via non-homologous end joining by increasing DNA-PKcs activation

    Get PDF
    AbstractNon-homologous end joining (NHEJ) is one of the major pathways that repairs double-stranded DNA breaks (DSBs). Activation of DNA-PK is required for NHEJ. However, the mechanism leading to DNA-PKcs activation remains incompletely understood. We provide evidence here that the MEK–ERK pathway plays a role in DNA-PKcs-mediated NHEJ. In comparison to the vehicle control (DMSO), etoposide (ETOP)-induced DSBs in MCF7 cells were more rapidly repaired in the presence of U0126, a specific MEK inhibitor, based on the reduction of γH2AX and tail moments. Additionally, U0126 increased reactivation of luciferase activity, which resulted from the repair of restriction enzyme-cleaved DSBs. Furthermore, while inhibition of ERK activation using the dominant-negative MEK1K97M accelerated the repair of DSBs, enforcing ERK activation with the constitutively active MEK1Q56P reduced DSB repair. In line with MEK activating ERK1 and ERK2 kinases, knockdown of either ERK1 or ERK2 increased DSB repair. Consistent with the activation of DNA-PKcs being required for NHEJ, we demonstrated that inhibition of ERK activation using U0126, MEK1K97M, and knockdown of ERK1 or ERK2 enhanced ETOP-induced activation of DNA-PKcs. Conversely, enforcing ERK activation by MEK1Q56P reduced ETOP-initiated DNA-PKcs activation. Taken together, we demonstrate that ERK reduces NHEJ-mediated repair of DSBs via attenuation of DNA-PKcs activation

    Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates

    Get PDF
    A self-assembled monolayer is employed to modify the HTL in inverted perovskite solar cells, which results in significant photovoltaic performance enhancement, and can be applied on roll-to-roll fabricated flexible perovskite solar cells.</p

    A detailed study on the Fe-doped TiO2 thin films induced by pulsed laser deposition route

    Get PDF
    Fe-doped TiO2 thin films are deposited both on the (1 0 0) oriented Si and glass substrates by pulsed laser deposition technique using Fe powder doped TiO2 ceramic target. The structural and optical properties of the film have been studied in detail. The degree of film crystallinity is investigated by X-ray diffraction and confirmed by Raman scattering measurements. The stoichiometry and chemical states of Fe, Ti and O are probed by X-ray photoelectron spectroscopy. The surface morphologies are observed by Scanning electron microscopy. The optical properties are studied by measuring the transmittance and the optical constants, the refractive index and the extinction coefficient. It is found that the substrate temperature is a key factor in determining the thin film structure which further influences the refractive index and the optical band gap of the film. An anatase structure emerges above 300 °C while the rutile structure appears when the substrate temperature is higher than 500 °C. Another result is that Fe exists in the deposited films as Fe3+ and the atomic concentration of Fe in the films is much lower than that in the source target.publishe

    IQGAP2, A candidate tumour suppressor of prostate tumorigenesis

    Get PDF
    AbstractLoss of IQGAP2 contributes to the tumorigenesis of hepatocellular carcinoma and gastric cancer. However, whether IQGAP2 also suppresses prostate tumorigenesis remains unclear. We report here that IQGAP2 is a candidate tumour suppressor of prostate cancer (PC). Elevated IQGAP2 was detected in prostatic intraepithelial neoplasia (PIN), early stages of PCs (Gleason score ≤3), and androgen-dependent LNCaP PC cells. However, IQGAP2 was expressed at substantially reduced levels not only in prostate glands and non-tumorigenic BPH-1 prostate epithelial cells but also in advanced (Gleason score 4 or 5) and androgen-independent PCs. Furthermore, xenograft tumours that were derived from stem-like DU145 cells displayed advanced features and lower levels of IQGAP2 in comparison to xenograft tumours that were produced from non stem-like DU145 cells. Collectively, these results suggest that IQGAP2 functions in the surveillance of prostate tumorigenesis. Consistent with this concept, ectopic IQGAP2 reduced the proliferation of DU145, PC3, and 293T cells as well as the invasion ability of DU145 cells. While ectopic IQGAP2 up-regulated E-cadherin in DU145 and PC3 cells, knockdown of IQGAP2 reduced E-cadherin expression. In primary PC and DU145 cells-derived xenograft tumours, the majority of tumours with high levels of IQGAP2 were strongly-positive for E-cadherin. Therefore, IQGAP2 may suppress PC tumorigenesis, at least in part, by up-regulation of E-cadherin. Mechanistically, overexpression of IQGAP2 significantly reduced AKT activation in DU145 cells and inhibition of AKT activation upregulated E-cadherin, suggesting that IQGAP2 increases E-cadherin expression by inhibiting AKT activation. Taken together, we demonstrate here that IQGAP2 is a candidate tumour suppressor of PC

    Machine learning for the prediction of all-cause mortality in patients with sepsis-associated acute kidney injury during hospitalization

    Get PDF
    BackgroundSepsis-associated acute kidney injury (S-AKI) is considered to be associated with high morbidity and mortality, a commonly accepted model to predict mortality is urged consequently. This study used a machine learning model to identify vital variables associated with mortality in S-AKI patients in the hospital and predict the risk of death in the hospital. We hope that this model can help identify high-risk patients early and reasonably allocate medical resources in the intensive care unit (ICU).MethodsA total of 16,154 S-AKI patients from the Medical Information Mart for Intensive Care IV database were examined as the training set (80%) and the validation set (20%). Variables (129 in total) were collected, including basic patient information, diagnosis, clinical data, and medication records. We developed and validated machine learning models using 11 different algorithms and selected the one that performed the best. Afterward, recursive feature elimination was used to select key variables. Different indicators were used to compare the prediction performance of each model. The SHapley Additive exPlanations package was applied to interpret the best machine learning model in a web tool for clinicians to use. Finally, we collected clinical data of S-AKI patients from two hospitals for external validation.ResultsIn this study, 15 critical variables were finally selected, namely, urine output, maximum blood urea nitrogen, rate of injection of norepinephrine, maximum anion gap, maximum creatinine, maximum red blood cell volume distribution width, minimum international normalized ratio, maximum heart rate, maximum temperature, maximum respiratory rate, minimum fraction of inspired O2, minimum creatinine, minimum Glasgow Coma Scale, and diagnosis of diabetes and stroke. The categorical boosting algorithm model presented significantly better predictive performance [receiver operating characteristic (ROC): 0.83] than other models [accuracy (ACC): 75%, Youden index: 50%, sensitivity: 75%, specificity: 75%, F1 score: 0.56, positive predictive value (PPV): 44%, and negative predictive value (NPV): 92%]. External validation data from two hospitals in China were also well validated (ROC: 0.75).ConclusionsAfter selecting 15 crucial variables, a machine learning-based model for predicting the mortality of S-AKI patients was successfully established and the CatBoost model demonstrated best predictive performance

    Targeting CBLB as a potential therapeutic approach for disseminated candidiasis

    Get PDF
    We thank J.M. Penninger (University of Toronto) for providing Cblb−/− mice, Y. Iwakura (Tokyo University of Science) for providing Clec4n−/− mice, S. Lipkowitz (National Cancer Institute, US National Institutes of Health) for providing Cblb constructs, X. Lin (MD Anderson Cancer Center) for providing the antibody to mouse dectin-3 and Card9−/− bone marrow cells, P.R. Sundstrom (Dartmouth University) for providing the C. albicans cap1 mutant, and L.D. Chaves (University at Buffalo) for flow cytometric analysis of myeloid cells in the kidneys. We also thank A. Lovett-Racke (Ohio State University) for her advice on in vivo Cblb-knockdown experiments. This work was supported by the US National Institutes of Health (grants R01 AI090901, R01 AI123253, and R21 AI117547; all to J.Z.), the American Heart Association (AHA Great Rivers Associate Grant-in-Aid grant 16GRNT26990004; J.Z.), a start-up fund from the Ohio State University College of Medicine (J.Z.), and the Wellcome Trust (G.D.B.).Peer reviewedPostprin
    corecore