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SPECIAL TOPIC — New generation solar cells

Effect of hydroxyl on dye-sensitized solar
cells assembled with TiO2 nanorods
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TiO2 nanorods have been prepared on ITO substrates by dc reactive magnetron sputtering technique. The hydroxyl
groups have been introduced on the nanorods surface. The structure and the optical properties of these nanorods have been
studied. The dye-sensitized solar cells (DSSCs) have been assembled using these TiO2 nanorods as photoelectrode. And
the effect of the hydroxyl groups on the properties of the photoelectric conversion of the DSSCs has been studied.

Keywords: hydroxyl groups, TiO2 nanorod, dye-sensitized solar cells, sputtering

PACS: 68.37.–d, 81.15.Cd, 88.40.H– DOI: 10.1088/1674-1056/27/1/016802

1. Introduction
Dye-sensitized solar cells (DSSCs) have attracted signif-

icant attention due to their special features, such as low cost
and high light to electricity conversion efficiency. The cells
generally are composed by a dye adsorbed nanoporous ma-
terial, typically TiO2, and an electrolyte solution as a hole
transport layer containing a dissolved iodide ion/tri-iodide ion
redox couples.[1] The dye molecules absorb light to generate
excited electron–hole pairs. The electrons are then injected
into the porous TiO2 photoelectrode and propagate through it
until they are collected and transferred to the external elec-
tric circuit. The electron transport, recombination, and collec-
tion processes are three very important processes in DSSC and
have been extensive studied.[2–18] In order to improve the con-
version efficiency, the charge recombination possibility must
be reduced. Therefore a high efficiency and fast charge trans-
portation process is required. One dimensional (1D) nanos-
tructures, such as nanorod, nanotube, and nanowire, show a
promising solution to improve the charge transportation pro-
cess. Electron transport in 1D structure is expected to be
several orders of magnitude faster than that in random 3D
nanostructure.[12,19,20] Many works have been done for 1D
structure based DSSC and the conversation efficiency is ap-
proaching that for 3D nanoparticles based DSSC.[21–28]

Traditionally, the photoelectrodes of DSSC are made by
a chemical method which needs a high temperature (450 ◦C)
treatment for the densification of the TiO2 films. This high
temperature treatment will cause a problem for producing the
flexible cells as the polymeric substrates could not endure such

a high temperature. Magnetron sputtering technique has been
considered as industrial processes that are applicable to large
scale deposition with high uniformity at a relatively low de-
position temperature. In the beginning of this century, some
works on DSSC using TiO2 electrode prepared by sputtering
technique have been reported by Goméz et al.[29,30] Recently,
some other groups have also reported the results on DSSC
based on TiO2 films prepared by sputtering technique.[31–34]

So far, the energy conversion efficiency is still low for the
DSSCs based on sputtered TiO2 films as they cannot adsorb
a large amount of dye molecules because of the lower specific
surface area resulting from the compact structure which is a
typical characteristic of the sputtered films. In our previous
work, the TiO2 nanorods have been made by dc reactive mag-
netron sputtering and the effects of the nanorods dimension,
blocking layer, and annealing temperature on the efficiency
of DSSCs have been reported.[35–39] It is well known that the
ability to adsorb photosensitive dyes can be improved by intro-
ducing the surface hydroxyl groups. In this work, the effect of
the surface hydroxyl groups on the structure of the nanorods
is discussed and the DSSCs are assembled using these TiO2

nanorods as the electrode. The photovoltaic properties of the
DSSCs are studied.

2. Experimental section
The titanium oxide nanorods were deposited both on glass

and commercial ITO substrates by dc reactive magnetron sput-
tering technique. The nanorods deposited on glass substrates
were used for the simulations of the transmittance for obtain-

†Corresponding author. E-mail: ljm@isep.ipp.pt
© 2018 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn
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ing the film thickness and the optical constants. The nanorods
deposited on ITO substrates were used for dye-sensitized so-
lar cells. The resistance of the ITO substrate is 30–40 Ω

per square. The titanium metal with a purity of 99.99%
(Φ60×3 mm, Grikin Advanced Materials Co. Ltd.) was used
as the sputtering target. The vacuum chamber was pumped us-
ing a turbo molecular pump backed with a mechanic pump.
Before the deposition, the chamber was pumped down to
1× 10−3 Pa, and then high purity Ar and O2 gases were in-
troduced into the chamber through the individual mass flow
controller. The oxygen partial pressure and the total sputter-
ing pressure in the chamber were kept at 0.3 Pa and 1.5 Pa,
respectively for all deposition processes. The target–substrate
distance was kept at 60 mm. No extra heating and biasing was
applied to the substrate during all the deposition processes.
The sputtering current and the cathode potential were kept at
0.5 A and 400 V, respectively for all the depositions. The de-
position time was 6 hours. The hydroxyl group was introduced
by passing the oxygen gas through water before it was intro-
duced into the chamber. The water was kept at the room tem-
perature before it was introduced into the chamber. We did not
measure the temperature of the water after it was introduced
into the chamber. It is suggested that the temperature would
be increased due to the effect of the plasma in the chamber.
The sample prepared by this method was designated as the
sample prepared with water and the sample prepared by nor-
mal condition was designated as the sample prepared without
water.

The transmittance of the films was measured using a
Jasco V-550 UV–Vis spectrophotometer. The film thickness
and the optical constants were calculated by fitting the trans-
mittance using Scout software. The x-ray diffraction (XRD)
measurements were carried out using a Rigaku miniflex go-
niometer (30 kV, 15 mA). The surface morphologies were
studied using field emission scanning electron microscope
(FE-SEM). In order to get the clear images, the low vac-
uum model has been used. X-ray photoelectron spectroscopy
(XPS) was recorded on a Thermo Escalab 250 equipped with
a monochromatic Al Kα x-ray source. The spectra were
analyzed using CasaXPS (Casa Software, Ltd.). A stan-
dard Shirley baseline without any offset was used for back-
ground correction. The C 1s spectrum for adventitious car-
bon (284.8 eV) was used for charge correction. The de-
posited TiO2 films were sensitized with N719 dye by soaking
the films in an ethanolic solution of the N719 dye (0.5 mM
of (Ru(II)L2(NCS)2:2TBA, where L = 2,2’-bipyridyl-4,4’-
dicarboxylic acid) for 24 hours at room temperature. The
counter-electrode is sputtered Pt on the FTO glass and the elec-
trolyte is composed of 0.1 M I2, 0.1 M LiI, 0.6 M 1-hexyl-3-
methylimidazolium iodide, and 0.5 M 4-tert-butylpyridine in
3-methoxypropionitrile. The photocurrent–voltage measure-

ments were carried out with a princeton 2273 applied research
electrochemical system, a 500 W xenon lamp under AM 1.5G
(100 mW·cm−2) illumination, and a water filter. The light in-
tensity was adjusted to 100 mW/cm2. The cells were tested
using a metal mask with an active area of 0.15 cm2.

3. Results and discussion
In order to see the formation of the hydroxyl group in

the sample surface, the detailed XPS spectra of O 1s and Ti
2p for TiO2 nanorods prepared with and without water have
been measured as shown in Fig. 1. The O 1s peak can be
deconvoluted by three peaks located at 529.8 eV, 531.6 eV,
and 533.2 eV respectively. The strongest peak located at
529.8 eV can be attributed to O–Ti bonding (O2−), while the
other two peaks located at the higher energy side (531.6 eV
and 533.2 eV) can be attributed to the hydroxyl groups (OH−)

and hydrate and/or adsorbed water (H2O). It can be seen that
the intensity of the peaks related with the OH groups is much
higher for the sample prepared with water than that for the
sample prepared without water. It can be suggested that the
hydroxyl groups have been formed by introducing the water
during the sputtering process and result in a high OH group
peak intensity. For Ti 2p, two peaks located at 458.2 eV and
463.8 eV are detected, which correspond to Ti 2p3/2 and 2p1/2,
respectively. The samples prepared with and without water
show similar Ti 2p spectra. It indicates that the introducing of
the hydroxyl groups does not affect the Ti 2p spectra.

SEM images of the TiO2 nanorods prepared with and
without water are shown in Fig. 2. It can be seen that the sam-
ples prepared with and without water have a similar nanorod
structure. The increase of the surface hydroxyl group does not
affect the TiO2 nanorod structure.

Figure 3 shows the XRD patterns of TiO2 nanorods pre-
pared with and without water. All the peaks in the XRD
patterns can be indexed as the anatase phase of TiO2 and
the diffraction data are in good agreement with PDF card
21–1272. No other phase of TiO2 is observed. It can be
seen that the TiO2 nanorods prepared with and without water
have a preferred orientation along the [110] direction. How-
ever, the TiO2 nanorods prepared with water have a stronger
(220) diffraction peak intensity than that prepared without wa-
ter. The intensity of the (101) diffraction peak is similar for
the two samples. The (101) and the (220) peak intensities
have been calculated by fitting the XRD patterns and the ratio
I(220)/I(101) for the nanorods prepared with and without wa-
ter has been obtained. The ratio is 61 and 24 for the nanorods
prepared with and without water, respectively. From Fig. 3, it
can be seen that the (101) peak intensity does not have a very
clear change for the samples prepared with and without water.
It means that the preferred orientation along the [110] direc-
tion is enhanced for the TiO2 nanorods prepared with water.

016802-2



Chin. Phys. B Vol. 27, No. 1 (2018) 016802

with water  O 1sO2-

OH-

H2O

with water Ti 2p

528530532534536

In
te

n
si

ty
In

te
n
si

ty

Binding energy/eV

without water

454456458460462464466468

without water

In
te

n
si

ty
In

te
n
si

ty
Binding energy/eV

(a) (b) 

Fig. 1. (color online) High-resolution XPS spectra for the (a) O 1s and (b) Ti 2p peaks and respective fitting of the TiO2 nanorods
prepared with and without water.

500.0 nm 500.0 nm

Fig. 2. (color online) The SEM images of TiO2 nanorods prepared with and without water.

The average surface energies of the crystal planes of
the anatase TiO2 are related to the percentages of the 5-
foldcoordinated titanium atoms on the specific planes and are
1.09 J/m2, 0.90 J/m2, 0.53 J/m2, and 0.44 J/m2 for the [110],
[001], [100], and [101] crystal planes, respectively.[40] Usu-
ally, the [101] planes dominate anatase TiO2 single crystal,
which are thermodynamically stable due to a low surface en-
ergy. However, both the surface energy and the strain energy

of grains formed in the films will affect the development of
the texture for the polycrystalline films. The effects of strain
energy minimization are qualitatively similar to those of sur-
face and interface energy minimization in that normal grain
growth can not occur until the subpopulation of grains favored
by strain energy minimization has consumed all grains with
other orientations.[41] The competition between surface en-
ergy and strain energy during film growth might contribute to
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the changes in texture of the grains as observed in Fig. 3. For
sufficiently thin films, surface and interface energy minimizing
textures are favored; but for the thicker films with higher elas-
tic strains, strain energy minimizing textures are formed.[41]

It means that the (110) texture is dominated by strain energy
minimization and the (101) texture is dominated by surface en-
ergy minimization in the growth process. By introducing wa-
ter during the sputtering process, the mobility of the adatoms
in the substrate might be low, which results in favorable strain
energy minimizing textures during grain growth and a high
(220) diffraction peak intensity.
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Fig. 3. (color online) The x-ray diffraction patterns of TiO2 nanorods
deposited onto ITO substrates with and without water.
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Fig. 4. (color online) The transmittance of the TiO2 nanorods deposited
on glass substrate with and without water.

Figure 4 shows the specular transmittance spectra of the
TiO2 nanorods prepared with and without water. The transmit-
tance of the nanorods prepared with water is slightly higher
than that of the nanorods prepared without water. By fitting
the transmittance, the dispersion of the refractive index can be
extracted. The results are shown in Fig. 5. The nanorods pre-
pared without water have a higher refractive index than that
prepared with water. The refractive index is related with the
packing density of the sample. The hydroxyl groups in the
sample surface may result in a decrease of the packing density
and a low refractive index.

300 400 500 600 700 800 900
2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

R
ef

ra
ct

iv
e 

in
d
ex

 n

Wavelength/nm

with water
without water

Fig. 5. (color online) The refractive index of the TiO2 nanorods pre-
pared with and without water.

Figure 6 shows the absorption spectra of the TiO2

nanorods prepared with and without water. It can be seen
that the dye absorption (around 500 nm wavelength) is much
higher for TiO2 nanorods prepared with water than that pre-
pared without water. Although the specific surface area is not
measured, the morphology and the dimension of the nanorods
are very similar for the samples prepared with and without
water as shown in Fig. 2. It means that the specific surface
area does not change with the introduction of the hydroxyl
groups. Therefore, the increase of the dye absorption results
from the formation of the hydroxyl groups on the surface of
the nanorods. The J–V curves of DSSCs using TiO2 nanorods
prepared with and without water as photoelectrode are plot-
ted in Fig. 7 and the operation parameters are summarized in
Table 1. The photoelectric conversion efficiency is calculated
using the equation

η =
JscVocFF

Pin
×100%,

where η is the conversion efficiency, Jsc is the short circuit
current density which depends on the charge injection and
transportation, Voc is the open circuit voltage which is most
likely related with the difference between the Fermi level of
the semiconductor electrode and the redox potential in the
electrolyte, FF is the fill factor which is related to functioning
of the TiO2/electrolyte interface, the higher the recombination
of conduction band electrons with the electrolyte, the lower
FF will be,[12] and Pin is the incident light energy. It can be
seen clearly that the solar cell assembled with TiO2 nanorods
prepared with water has a higher photocurrent density com-
paring to that prepared without water. The presence of the
hydroxyl groups increases the absorption of the dye molecular
and results in a high photocurrent. However, a negative ef-
fect is also introduced by the hydroxyl groups on the nanorod
surface. As it can be seen from Table 1 that the fill factor is
lower for the solar cell assembled with nanorods prepared with
water, which may reduce the conversion efficiency. It is no yet
very clear why the introduction of the hydroxyl reduces the fill
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factor. It is suggested that the introduction of the hydroxyl will
modify the parasitic resistances of the cell and result in a low
fill factor. The conversion efficiency is dominated by the pho-
tocurrent. By introducing the hydroxyl groups on the nanorods
surface, the efficiency is increased from 3.1% to 3.8%.
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Fig. 6. (color online) Absorption spectra of TiO2 nanorods prepared
with and without water after dye sensitized.
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Fig. 7. (color online) Current-potential characteristics of the TiO2
nanorods prepared with and without water.

Table 1. Performance comparison of the DSSCs assembled with TiO2
nanorods prepared with and without water.

Jsc/mA·cm−2 Voc/V FF η/%
Without water 8.4 0.64 0.58 3.1

With water 12.1 0.63 0.50 3.8

4. Conclusion

TiO2 nanorods were prepared by dc reactive magnetron
sputtering. The hydroxyl groups on the nanorod surface were
introduced by passing the oxygen reactive gas through water.
The preferred orientation along the [110] direction has been
enhanced and the dye absorption has been improved by the
hydroxyl groups. The DSSCs assembled using TiO2 nanorods
with hydroxyl groups show a better conversion efficiency than
those using TiO2 nanorods without hydroxyl groups.
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