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Background: Sepsis-associated acute kidney injury (S-AKI) is considered to be

associated with high morbidity and mortality, a commonly accepted model to

predict mortality is urged consequently. This study used a machine learning

model to identify vital variables associated with mortality in S-AKI patients in the

hospital and predict the risk of death in the hospital. We hope that this model can

help identify high-risk patients early and reasonably allocate medical resources in

the intensive care unit (ICU).

Methods: A total of 16,154 S-AKI patients from the Medical Information Mart for

Intensive Care IV database were examined as the training set (80%) and the

validation set (20%). Variables (129 in total) were collected, including basic patient

information, diagnosis, clinical data, and medication records. We developed and

validated machine learning models using 11 different algorithms and selected the

one that performed the best. Afterward, recursive feature elimination was used to

select key variables. Different indicators were used to compare the prediction

performance of each model. The SHapley Additive exPlanations package was

applied to interpret the best machine learning model in a web tool for clinicians

to use. Finally, we collected clinical data of S-AKI patients from two hospitals for

external validation.

Results: In this study, 15 critical variables were finally selected, namely, urine

output, maximum blood urea nitrogen, rate of injection of norepinephrine,

maximum anion gap, maximum creatinine, maximum red blood cell volume

distribution width, minimum international normalized ratio, maximum heart rate,
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maximum temperature, maximum respiratory rate, minimum fraction of inspired

O2, minimum creatinine, minimum Glasgow Coma Scale, and diagnosis of

diabetes and stroke. The categorical boosting algorithm model presented

significantly better predictive performance [receiver operating characteristic

(ROC): 0.83] than other models [accuracy (ACC): 75%, Youden index: 50%,

sensitivity: 75%, specificity: 75%, F1 score: 0.56, positive predictive value (PPV):

44%, and negative predictive value (NPV): 92%]. External validation data from two

hospitals in China were also well validated (ROC: 0.75).

Conclusions: After selecting 15 crucial variables, a machine learning-based

model for predicting the mortality of S-AKI patients was successfully

established and the CatBoost model demonstrated best predictive performance.
KEYWORDS

sepsis, acute kidney injury, mortality, predictive model, machine learning
Introduction

Sepsis, which is one of the principal causes of mortality

worldwide and affects more than 19 million people every year (1–

3), is defined as a sequential fatal organ dysfunction after infection

with a dysregulated host response by the Third International

Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

Similarly, the Kidney Disease: Improving Global Outcomes

(KDIGO) group integrated previous diagnostic criteria and

proposed an international consensus for acute kidney injury (AKI)

to be defined as (i) an increase in SCr level by more than 26.5 mmol/L

(0.3 mg/dl) within 48 h; (ii) an increase in SCr level by more than 1.5

times the baseline (confirmed or presumed to occur within 7 days);

and (iii) urine volume <0.5 ml/(kg·h) lasting for more than 6 h (4). In

critically ill patients, the main cause of AKI has been considered to be

sepsis for a long time, and 45%–70% of AKI patients are considered

to have sepsis (5). Thus, sepsis-associated acute kidney injury (S-

AKI) should be defined as a syndrome that meets the Sepsis-3 and

KDIGO criteria simultaneously (6).

The epidemiology of S-AKI has not been fully clarified probably

because of uncoordinated epidemiology of sepsis and AKI criteria,

but the global incidence is estimated to be 6 million cases annually

(6). The mortality of S-AKI was reported to be 45.99% in the

intensive care unit (ICU) (7), and a retrospective cohort study

discovered that S-AKI was correlated with a significantly higher

mortality rate compared to sepsis without AKI (71.7% vs. 21.3%)

(8). At present, many studies have shown that S-AKI imposed a

heavy burden on patients. In a review, Hoste et al. summarized that

the occurrence of AKI was related to the severity of sepsis and that

S-AKI was responsible for the increase in disease acuity and burden

of organ dysfunction (9). Bagshaw et al. conducted an observational

cohort study spanning multiple nations and centers, which reported

that S-AKI was associated with a high-crude in-hospital case fatality

rate (51.8%) (5). Furthermore, a multicenter retrospective cohort

study in China concluded that sepsis resulted in 32.0% of hospital-

acquired AKI and 15.2% of community-acquired AKI. In addition,
02
AKI was correlated with high mortality, longer length of stay, and

heavier daily expenses while in the hospital (10). Additionally, an

observational study of 618 ICU patients with AKI, the Program to

Improve Care in Acute Renal Disease (PICARD), revealed that the

in-hospital mortality rate of S-AKI was noticeably high, regardless

of sepsis occurring before AKI (48%) or after AKI (44%) (11).

Considering that S-AKI patients experience high morbidity and

mortality, the precise prediction of their prognosis is necessary.

Novel biomarkers like tissue inhibitor of metalloproteinases-2

(TIMP-2), neutrophil gelatinase-associated lipocalin (NGAL), and

insulin-like growth factor binding protein-7 (IGFBP-7) have been

evaluated to forecast the prognosis of S-AKI; however, their

sensitivity has not been verified in large multicenter studies (12).

Conventional scoring systems of severity, such as Sequential Organ

Failure Assessment (SOFA) and Acute Physiology and Chronic

Health Evaluation II (APACHE II), have been widely used in the

ICU to predict outcomes. Regrettably, they lack discrimination and

prediction accuracy, and external validation is required before

application to S-AKI cohorts (13). Consequently, it is essential to

establish a new model that efficiently and accurately predicts the

outcomes of S-AKI.

As a novel technology, machine learning has been utilized in

various medical fields owing to its ability to develop robust risk

models and improve prediction power (14, 15). The accuracy of

predicting the occurrence of S-AKI utilizing machine learning has

been confirmed (16–18). However, this radical new technology has

not been applied to predict the mortality of patients with S-AKI,

which is equally noteworthy. Gradient boosted decision trees

(GBDTs) are powerful machine learning ensemble techniques,

particularly when massive amounts of data are involved in

classification and regression tasks. As one of the GBDT families,

CatBoost is perfectly suited to processing categorical, heterogeneous

data (19). Since its debut, CatBoost has been used in some medical

studies and demonstrated its excellent predictive ability.

This study aimed to identify the risk factors associated with

mortality in patients with S-AKI and develop a machine learning
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model to predict death in hospitals on the basis of primary research

emphasizing the prediction of occurrence. The performance of this

machine learning model was compared with 10 other machine

learning models to validate the superiority of the proposed model.
Materials and methods

Study subjects

The Medical Information Mart for Intensive Care IV (MIMIC-

IV) is a database containing patient data from all ICU and

emergency departments at Beth Israel Deaconess Medical Center

from 2008 to 2019. The contents of the database include basic

patient information, diagnosis, clinical data, and medication

records, among others. We extracted the data of patients with

sepsis and AKI after admission from the MIMIC-IV database as

training and validation sets. Then, we collected the data of patients

with sepsis and AKI in the ICU of Xiangya Hospital (from 2015 to

2022) and Third Xiangya Hospital (from 2022) of Central South

University, Changsha, China as an external validation set (Figure 1).

According to the KDIGO guidelines, AKI is characterized by

one or more of the following: (i) an increase in SCr level by more
Frontiers in Immunology 03
than 26.5 mmol/L (0.3 mg/dl) within 48 h; (ii) an increase in SCr

level by more than 1.5 times the baseline (confirmed or presumed to

occur within 7 days); and (iii) urine volume <0.5 ml/(kg·h) lasting

for more than 6 h. According to the Third International Consensus

Definitions for Sepsis and Septic Shock (Sepsis-3), sepsis is

characterized by life-threatening organ dysfunction as a result of

infection coupled with an impaired host response. According to the

SOFA, organ dysfunction is a change in the total SOFA score of 2

points caused by infection. As part of this study, patients who were

younger than 18 years of age, had stayed in the ICU for less than

24 h, and missed essential data were excluded. We used multiple

imputations to supplement the missing values of patients. The

death group is composed of patients who died in the hospital,

and the alive group consists of patients who did not die

during hospitalization.

According to the ethical standards of the responsible committee

on human experimentation in China and to the Helsinki

Declaration of 1975, all procedures in this study were conducted

in accordance with the ethical standards of the responsible

committee. The study was initiated under the guidance of

Transparent Reporting of a Multivariable Prediction Model for

Individual Prognosis or Diagnosis (TRIPOD) (Supplementary

Figure 1). The Xiangya Hospital of Central South University
A

B

FIGURE 1

(A) The workflow of the study. (B) The algorithm chart of the study.
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Ethics Committee reviewed and approved this study on 27 April

2022 (protocol number 202204101), which used machine learning

to predict all-cause mortality among patients with S-AKI

while hospitalized.
Study design and data collection

We collected 129 variables within 24 h of admission. The

collected variables included patients’ basic information, diagnosis,

medication records, clinical data such as temperature, blood

pressure, concomitant disease, laboratory indicators, urine output

(24-h urine volume after diagnosis of S-AKI), injection rate of

norepinephrine (initial concentration of norepinephrine after

diagnosis of S-AKI), and commonly used scores such as

Simplified Acute Physiology Score II (SAPS-II), SOFA score, and

Glasgow Coma Scale (GCS). The external validation set was derived

from the electronic health record systems of Xiangya Hospital and

Third Xiangya Hospital. The data were collected by two authors (LL

and HZ). Data collected by different hospitals were converted and

unified. As an example, the injection rate of norepinephrine at 1

mcg/kg/min equaled 1 mg/kg/min. The concentration of creatinine

in the blood was 88.4 mmol/L per mg/dl.
Statistical analysis

As appropriate, continuous variables were compared between

the death and alive groups using either Student’s t-test or the rank-

sum test. A chi-square test or Fisher’s exact test was used to

compare categorical variables.

Then, the data were standardized such that the mean value was

0 and the standard deviation was 1. The K-nearest neighbor (KNN)

algorithm was used to impute missing values. Next, the dataset was

randomly split into a training set (80%) and a validation set (20%).

On the training set, the recursive feature elimination (RFE)

algorithm was utilized to identify crucial variables, and we

developed a machine learning model based on categorical

boosting (CatBoost) (20). Basically, RFE is a way of selecting

features that recursively fit a model derived from smaller feature

sets until a given termination criterion is reached. A feature’s

importance in the trained model is graded in each loop. In an

RFE model, dependencies and collinearities are eliminated by

recursively eliminating the lowest-priority feature. As a final step,

the most important features were screened out, and the CatBoost

model was developed based on the final set of features. Other

features were not included because they only brought a small

increment in the area under the receiver operating characteristic

(AUROC) curve but significantly increased the difficulty of model

applications. The trained model was validated on the validation set,

and the AUROC curve was calculated correspondingly.

This study compared 10 other machine learning models to the

proposed one, namely, KNN, AdaBoost, multilayer perceptron

(MLP), support vector machine (SVM), logistic regression (LR),

NaiveBayes, gradient boosting decision tree (GBDT), random

forest, light gradient boosting (LightGBM), and extreme gradient
Frontiers in Immunology 04
boosting (XGBoost). These models were also developed on the

training set and validated on the validation set. AUROC curves were

compared between these models and our CatBoost model.

Additionally, other performance measures were examined, such

as accuracy (ACC), Youden index, sensitivity, specificity, F1 score,

positive predictive value (PPV), and negative predictive

value (NPV).

To explain the model, the SHapley Additive exPlanations (SHAP)

package in Python was used. A game-theoretic approach is used by

the SHAP package to interpret the output of the machine learning

model (21). The model was able to connect optimal credit allocation

to local explanations for each prediction sample. Two cases were

analyzed by using SHAP values to examine model interpretability.

The statistical analyses that were carried out in the present study were

performed using Python (version 3.7.6); a significance level of p <

0.05 was considered to be statistically significant.
Results

Study population

There were 16,154 patients included in the MIMIC-IV set, and

relevant information of the cohort can be viewed in Table 1. The

average age of the patients was 67.7 years, men accounted for 42.3%,

and the average body mass index (BMI) was 30.9. In the cohort,

20.5% of the patients died in the hospital, and their length of stay in

the ICU was 3.7 days, longer than that of patients in the alive group.

Information of external validation cohort is shown in

Supplementary Table 1 and overall workflow and algorithm chart

are shown in Figure 1.
Key variables

After utilizing the RFE algorithm, 15 essential variables were

selected, namely, urine output, maximum blood urea nitrogen

(BUN), rate of injection of norepinephrine, maximum anion gap,

maximum creatinine, maximum red blood cell volume distribution

width (RDW), minimum international normalized ratio (INR),

maximum heart rate, maximum temperature, maximum

respiratory rate, minimum fraction of inspired O2 (FiO2),

minimum creatinine, minimum GCS score, and diagnosis of

diabetes and stroke (Figure 2).

Then, machine learning was used for predicting hospital death

of patients. The AUC of the proposed CatBoost model was 0.827,

which is shown in Figure 3. The CatBoost model markedly

outperformed conventional LR (AUC: 0.788) and nine other

machine learning models. As described in Table 2, the ACC, best

cutoff, Youden index, sensitivity, specificity, F1 score, PPV, and

NPV of the CatBoost model were 75%, 19.5%, 50%, 75%, 75%, 56%,

44%, and 92%, respectively. These indicators of LR were 73%,

20.1%, 44%, 71%, 74%, 52%, 41%, and 90%, respectively. In

addition, the ROC curve of the validation set reached 0.75,

indicating the good applicability of our model (Supplementary

Figure 2). To compare with the conventional scoring system, a
frontiersin.org
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TABLE 1 Most of the variables that differ between the two groups in the MIMIC-IV set.

Variable All (n = 16,154) Alive group (n = 12,836) Death group (n = 3,318) p-Value

N 16,154 12,836 3,318

Charlson Index, median [Q1,Q3] 6.0 [4.0,8.0] 6.0 [4.0,8.0] 7.0 [5.0,9.0] <0.001

Age, mean (SD) 67.7 (15.2) 67.1 (15.2) 70.3 (14.8) <0.001

Gender, n (%) F 6,836 (42.3) 5,362 (41.8) 1,474 (44.4) 0.006

M 9,318 (57.7) 7,474 (58.2) 1,844 (55.6)

Ethnicity, n (%) Asian 377 (2.3) 294 (2.3) 83 (2.5) <0.001

Black 1,733 (10.7) 1,421 (11.1) 312 (9.4)

Hispanic 538 (3.3) 443 (3.5) 95 (2.9)

Other 2,586 (16.0) 1,839 (14.3) 747 (22.5)

White 10,920 (67.6) 8,839 (68.9) 2,081 (62.7)

Liver disease, n (%) 3,253 (20.1) 2,096 (16.3) 1,157 (34.9) <0.001

Stroke, n (%) 1,014 (6.3) 666 (5.2) 348 (10.5) <0.001

BMI, mean (SD) 30.9 (8.8) 31.2 (8.7) 29.5 (8.7) <0.001

SAPS-II, median [Q1,Q3] 42.0 [34.0,52.0] 40.0 [32.0,49.0] 54.0 [44.0,66.0] <0.001

SOFA, median [Q1,Q3] 6.0 [4.0,9.0] 5.0 [4.0,8.0] 9.0 [6.0,12.0] <0.001

GCS, median [Q1,Q3] 15.0 [13.0,15.0] 15.0 [13.0,15.0] 15.0 [12.0,15.0] <0.001

Heart rate max, mean (SD) 106.1 (21.6) 104.3 (20.5) 113.0 (23.9) <0.001

Heart rate min, mean (SD) 72.0 (15.9) 71.3 (15.0) 74.6 (18.9) <0.001

Respiratory rate max, mean (SD) 28.7 (6.7) 28.1 (6.4) 30.7 (7.1) <0.001

Respiratory rate min, mean (SD) 12.5 (3.9) 12.2 (3.7) 13.4 (4.5) <0.001

MBP max, mean (SD) 105.0 (28.7) 104.7 (27.3) 106.3 (33.6) 0.016

MBP min, mean (SD) 54.6 (13.4) 55.9 (12.5) 49.7 (15.3) <0.001

SBP max, mean (SD) 146.4 (23.9) 147.2 (23.3) 143.4 (25.7) <0.001

SBP min, mean (SD) 85.9 (16.4) 87.6 (15.4) 79.2 (18.3) <0.001

PaO2 max, median [Q1,Q3] 174.0 [104.0,321.0] 188.0 [109.0,343.0] 144.0 [94.0,227.0] <0.001

PaO2 min, median [Q1,Q3] 84.0 [65.0,111.0] 87.0 [68.0,115.0] 73.0 [56.0,96.0] <0.001

SpO2 max, median [Q1,Q3] 100.0 [100.0,100.0] 100.0 [100.0,100.0] 100.0 [100.0,100.0] <0.001

SpO2 min, median [Q1,Q3] 92.0 [90.0,95.0] 93.0 [90.0,95.0] 91.0 [86.0,94.0] <0.001

Temperature max, mean (SD) 37.5 (0.8) 37.5 (0.8) 37.4 (1.0) <0.001

Temperature min, mean (SD) 36.2 (0.8) 36.3 (0.7) 36.0 (1.1) <0.001

AST max, median [Q1,Q3] 54.0 [28.0,161.0] 47.0 [26.0,121.0] 91.0 [37.0,345.0] <0.001

AST min, median [Q1,Q3] 48.0 [26.0,123.0] 42.0 [24.0,97.0] 72.0 [32.0,217.0] <0.001

PTT max, median [Q1,Q3] 34.4 [29.3,46.4] 33.4 [28.8,42.7] 40.9 [31.7,64.5] <0.001

PTT min, median [Q1,Q3] 30.7 [27.1,36.7] 30.0 [26.8,35.1] 34.4 [28.8,43.6] <0.001

Platelet max, median [Q1,Q3] 189.0 [135.0,257.0] 190.0 [139.0,255.0] 183.0 [114.0,268.0] <0.001

Platelet min, median [Q1,Q3] 160.0 [107.0,226.0] 162.0 [112.0,226.0] 151.0 [84.0,228.0] <0.001

RBC max, mean (SD) 3.6 (0.7) 3.6 (0.7) 3.5 (0.8) <0.001

RBC min, mean (SD) 3.2 (0.7) 3.3 (0.7) 3.2 (0.8) <0.001

WBC max, median [Q1,Q3] 13.5 [9.5,18.6] 13.2 [9.4,18.0] 15.0 [10.0,21.2] <0.001

(Continued)
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CatBoost model for the SOFA score was made, and the results show

that the prediction ability of SOFA is inferior to the proposed model

in the training and validation set (Supplementary Figure 3). As AST

was almost double in the death group, and in the raw data, the

number of patients with AST greater than 45 U/L was almost

equal to the number of patients with liver disease. Therefore, a

CatBoost model was also established to conduct a liver disease

subgroup analysis that also demonstrates a good prediction power

on the mortality of S-AKI among these subgroup patients

(Supplementary Figure 4).
Application of the model

Analyzing the integral cohort by the SHAP package showed the

crucial variables for predicting death (Figure 4). Input the

information of a patient into the model: history of stroke,

minimum GCS score of 15, maximum heart rate of 121 beats per

minute, maximum temperature of 36.56°C, maximum respiratory

rate of 68 breaths per minute, maximum BUN level of 73 mg/dl,

minimum INR of 2.9, maximum creatinine level of 3 mg/dl,

minimum creatinine level of 2.1 mg/dl, maximum RDW of
Frontiers in Immunology 06
16.8%, minimum FiO2 of 100%, maximum anion gap of 31 mEq/

L, urine output of 405 ml/day, and a rate of injection of

norepinephrine of 0.499 mcg/kg/min. The model showed that the

risk of hospital mortality was 28.9% (higher than the best cutoff),

suggesting that the patient had a high risk of death (Example 1,

Figure 4). Input the information of another patient into the model:

no history of stroke or diabetes, minimum GCS score of 15,

maximum heart rate of 86 beats per minute, maximum

temperature of 36.94°C, maximum respiratory rate of 28 breaths

per minute, maximum BUN level of 74 mg/dl, minimum INR of 1.1,

maximum creatinine level of 4.1 mg/dl, minimum creatinine level

of 3.5 mg/dl, maximum RDW of 14.9%, minimum FiO2 of 70%,

maximum anion gap of 18 mEq/L, urine output of 1,060 ml, and a

rate of injection of norepinephrine of 0 mcg/kg/min. The

probability of hospital mortality was predicted to be 18.37%,

suggesting a good prognosis (Example 2, Figure 4).
Discussion

Machine learning has been widely applied to solve medical and

clinical problems, by which it has become a popular research topic.
TABLE 1 Continued

Variable All (n = 16,154) Alive group (n = 12,836) Death group (n = 3,318) p-Value

WBC min, median [Q1,Q3] 10.4 [7.3,14.5] 10.2 [7.2,13.8] 11.7 [7.4,17.0] <0.001

RDW max, mean (SD) 15.9 (2.5) 15.6 (2.4) 16.9 (2.8) <0.001

RDW min, mean (SD) 15.5 (2.4) 15.3 (2.3) 16.5 (2.7) <0.001

Glucose max, median [Q1,Q3] 143.0 [115.0,194.0] 140.0 [114.0,186.0] 162.0 [122.0,225.2] <0.001

Glucose min, median [Q1,Q3] 115.0 [95.0,141.0] 115.0 [96.0,139.0] 114.0 [88.0,148.0] 0.017

Lactate max, median [Q1,Q3] 2.3 [1.5,3.8] 2.2 [1.5,3.3] 3.5 [1.9,7.2] <0.001

Lactate min, median [Q1,Q3] 1.6 [1.2,2.3] 1.5 [1.1,2.1] 2.2 [1.4,3.8] <0.001

BUN max, median [Q1,Q3] 27.0 [18.0,45.0] 25.0 [17.0,41.0] 38.0 [25.0,58.0] <0.001

BUN min, median [Q1,Q3] 23.0 [15.0,39.0] 22.0 [15.0,35.0] 32.0 [21.0,52.0] <0.001

Creatinine max, median [Q1,Q3] 1.4 [0.9,2.5] 1.3 [0.9,2.2] 1.9 [1.2,3.1] <0.001

Creatinine min, median [Q1,Q3] 1.2 [0.8,2.1] 1.1 [0.8,1.9] 1.6 [1.0,2.6] <0.001

Urine output, median [Q1,Q3] 1,040.0 [537.0,1,665.0] 1,150.0 [675.0,1,760.0] 605.0 [186.0,1,110.0] <0.001

RRT, n (%) 1,633 (10.1) 1,135 (8.8) 498 (15.0) <0.001

IMV, n (%) 9,518 (58.9) 7,398 (57.6) 2,120 (63.9) <0.001

Vasopressor support, n (%) 5,912 (36.6) 3,942 (30.7) 1,970 (59.4) <0.001

Rate of norepinephrine, median [Q1,Q3] 0.0 [0.0,0.1] 0.0 [0.0,0.0] 0.1 [0.0,0.4] <0.001

IMV durations, median [Q1,Q3] 0.4 [0.0,2.6] 0.2 [0.0,1.9] 1.6 [0.0,5.1] <0.001

Hospital mortality, n (%) 3,318 (20.5) 0(0.0) 3,318 (100.0) <0.001

Length of ICU stay, median [Q1,Q3] 3.0 [1.7,6.0] 2.9 [1.7,5.6] 3.7 [1.7,7.5] <0.001

Length of hospital stay, median [Q1,Q3] 8.7 [5.2,15.1] 9.1 [5.8,15.7] 6.3 [2.4,13.3] <0.001
fron
SD, standard deviation; BMI, body mass index; SAPS-II, Simplified Acute Physiology Score II; SOFA, Sequential Organ Failure Assessment; GCS, Glasgow Coma Scale; MBP, mean blood
pressure; SBP, systolic blood pressure; PaO2, partial pressure of oxygen; SpO2, saturation of pulse oxygen; AST, aspartate aminotransferase; PTT, partial thromboplastin time; RBC, red blood cell;
WBC, white blood cell; RDW, red blood cell volume distribution width; BUN, blood urea nitrogen; RRT, renal replacement therapy; IMV, intermittent mandatory ventilation; ICU, intensive
care unit.
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Based on their shortcomings, novel biomarkers and conventional

scoring systems lack enough power to estimate the mortality of S-

AKI patients (12, 13). In this article, we discussed whether machine

learning improves the mortality prediction of S-AKI patients and

then selected the model with the strongest prediction ability.
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From the MIMIC-IV database used as a training set, 15 crucial

variables were selected using the RFE algorithm. These variables are

common in various clinical settings, which means information on

them can be easily obtained, and the application of machine

learning models will not be limited to a variable that is difficult to
FIGURE 2

The importance of each feature to the machine learning model.
FIGURE 3

Receiver operating characteristic curves for the machine learning model and logistic regression in the training set. CatBoost, categorical boosting;
GBDT, gradient boosting decision tree; LightGBM, light gradient boosting; AdaBoost, adaptive boosting; XGBoost, extremely gradient boosting; KNN,
K-nearest neighbor; MLP, multilayer perceptron; LR, logistic regression. SVM, support vector machine.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1140755
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2023.1140755
TABLE 2 Performance of machine learning models.

Model AUC ACC (%) Best cutoff Youden index (%) Sensitivity
(%)

Specificity
(%)

F1 score PPV (%) NPV (%)

CatBoost 0.83 75 0.195 50 75 75 0.56 44 92

GBDT 0.82 71 0.16 48 79 69 0.53 40 93

LightGBM 0.82 74 0.183 49 75 74 0.55 43 92

AdaBoost 0.82 79 0.494 48 65 83 0.57 51 90

Random
Forest 0.82 78 0.28 47 66 81 0.55 48 90

XGBoost 0.81 77 0.204 47 68 79 0.55 46 90

KNN 0.8 72 0.176 45 73 72 0.52 41 91

MLP 0.79 73 0.162 43 70 73 0.52 41 90

LR 0.79 73 0.201 44 71 74 0.52 41 90

NaiveBayes 0.76 68 0.092 41 74 67 0.49 37 91

SVM 0.76 74 0.149 45 69 75 0.53 43 90
F
rontiers in Immu
nology
 08
 fro
CatBoost, categorical boosting; GBDT, gradient boosting decision tree; LightGBM, light gradient boosting; AdaBoost, adaptive boosting; XGBooST, extremely gradient boosting; KNN, K-nearest
neighbor; MLP, multilayer perceptron; LR, logistic regression. SVM, support vector machine; ACC, accuracy, PPV, positive predictive value; NPV, negative predictive value.
FIGURE 4

Two examples of website tool usage. Enter the values of 15 key variables to predict the risk of death and show the contribution of each value to the
outcome. Example 1 has a higher risk of death, and example 2 may have a better prognosis.
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detect. Some studies have focused on the relative importance of each

variable in predicting prognosis. For example, a retrospective study

from a prospective cohort conducted by Sukmark et al. suggested

that a lower GCS score was associated with in-ICU mortality with

an adjusted odds ratio of 4.16 (3.10, 5.60) (22). Serum creatinine has

been extensively utilized as a predictor in severity scores that assess

renal function and adverse effects of renal dysfunction, such as

SOFA and APACHE II. In addition, it has been reported that BUN

is associated with multiorgan failure of ICU patients regardless of

admission diagnosis, including kidney failure and long-term

mortality (23). Sukmark also elaborated that BUN possibly

reflected multiorgan failure better than serum creatinine (22). As

mentioned before, some variables were found to be correlated with

prognosis. However, few have put them into one prediction model

and successfully quantified their ability to predict mortality.

After identifying these 15 variables, machine learning was

applied to predict the mortality of patients during hospitalization.

CatBoost is an open-source package and a new GBDT algorithm

announced in 2017. Compared to other GBDT algorithms, it

outperformed in handling categorical variables and reducing

overfitting (24). To prove the efficiency of the CatBoost model, it

was compared with 10 other machine learning models and SOFA.

Satisfactorily, the proposed model significantly outperformed the

others with an AUC of 0.827. Furthermore, we collected data from

Xiangya Hospital and Third Xiangya Hospital, Central South

University, China, to use as an external validation set. The ROC

curve of the validation set was also as high as 0.754.

Compared with several other S-AKI-related clinical model

studies (16–18), the innovation of this study is that the fourth

edition of the MIMIC database used includes more patients from

2017 to 2019 than the third edition, with a larger amount of data

and more recent data. In addition, in contrast to the related studies,

emphasis was placed on predicting the mortality of S-AKI patients

for the first time. Second, this study not only utilized data from the

database but also collected data from other hospitals for validation,

making the model more reliable. In addition, our training set is

from Western countries, while the validation set is from China,

indicating that the model has applicability among different

populations. Moreover, instead of just using one machine

learning algorithm to build the model, we compared multiple

machine learning algorithms and selected the one that performed

the best. Finally, since the chosen variables are easily accessible, the

prediction model has a wide range of applications in areas with

different medical levels.

However, our study has some limitations. First, the training set

data originated from only one database, while the validation set data

came from two hospitals in one region; thus, selection bias may

have occurred. Even in view of this, the proposed model constructed

by the MIMIC-IV database still passed the validation set from

China, which, in turn, proved the superiority of our model.

However, we must admit that more external validations are

needed. Second, the variables were selected by the RFE algorithm,

but the underlying mechanism was not discussed in our study.

As found in previous studies, S-AKI patients were treated with

mechanical ventilation and vasoactive therapy with greater

possibility (9), so was dialysis (70%) (11), which was
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simultaneously associated with a longer hospital stay (5).

Prolonging hospital stays and expensive treatments mean an

increasingly larger economic burden on patients and medical

insurance. Meanwhile, it is sometimes challenging for clinicians

to decide the priority treatment in the next step when condition

deteriorates rapidly. Consequently, applying the CatBoost-based

model to discern high-risk S-AKI patients and predict prognoses in

a timely and accurate manner and providing clinicians with optimal

treatment decision-making suggestions may help reduce these

burdens. In conclusion, we hope that the proposed model will

assist clinicians with better decision-making and allocating medical

resources reasonably.
Conclusions

This study demonstrates that predicting the mortality of S-AKI

patients in the ICU is critical and that the CatBoost-based model we

proposed outperformed conventional LR and nine other machine

learning models. Further validations across diverse study centers

will help verify the reliability and improve the validation efficiency

of this model.
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