102 research outputs found

    Relaxation and the nature of electrical stress related defects in ultra-thin dioxide on silicon

    Get PDF
    The instability of defects created in ultra-thin insulator, metal-oxide-silicon devices biased in the direct tunnel regime is investigated. For the case of electron injection from the silicon substrate, nearly complete defect relaxation is observed after the bias is removed, allowing the possibility of re-generating the defects. Modeling the defect generation process and examining differences between initial and subsequent degradation periods lead to an improved picture of both the relaxation process and the nature of the involved defects

    OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds.

    Get PDF
    Plants and seeds are the main dietary sources of zinc, iron, manganese, and copper, but are also the main entry point for toxic elements such as cadmium into the food chain. We report here that an Arabidopsis oligopeptide transporter mutant, opt3-2, over-accumulates cadmium (Cd) in seeds and roots but, unexpectedly, under-accumulates Cd in leaves. The cadmium distribution in opt3-2 differs from iron, zinc, and manganese, suggesting a metal-specific mechanism for metal partitioning within the plant. The opt3-2 mutant constitutively up-regulates the Fe/Zn/Cd transporter IRT1 and FRO2 in roots, indicative of an iron-deficiency response. No genetic mutants that impair the shoot-to-root signaling of iron status in leaves have been identified. Interestingly, shoot-specific expression of OPT3 rescues the Cd sensitivity and complements the aberrant expression of IRT1 in opt3-2 roots, suggesting that OPT3 is required to relay the iron status from leaves to roots. OPT3 expression was found in the vasculature with preferential expression in the phloem at the plasma membrane. Using radioisotope experiments, we found that mobilization of Fe from leaves is severely affected in opt3-2, suggesting that Fe mobilization out of leaves is required for proper trace-metal homeostasis. When expressed in yeast, OPT3 does not localize to the plasma membrane, precluding the identification of the OPT3 substrate. Our in planta results show that OPT3 is important for leaf phloem-loading of iron and plays a key role regulating Fe, Zn, and Cd distribution within the plant. Furthermore, ferric chelate reductase activity analyses provide evidence that iron is not the sole signal transferred from leaves to roots in leaf iron status signaling

    Evaluations of virtual and augmented reality technology-enhanced learning for higher education

    Get PDF
    Virtual reality (VR) has good potential to promote technology-enhanced learning. Students can benefit from immersive visualization and intuitive interaction in their learning of abstract concepts, complex structures, and dynamic processes. This paper is interested in evaluating the effects of VR learning games in a Virtual and Augmented Reality Technology-Enhanced Learning (VARTeL) environment within an engineering education setting. A VARTeL flipped classroom is established in the HIVE learning hub at Nanyang Technological University (NTU) Singapore for the immersive and interactive learning. Experiments are designed for the university students conducting the learning, with three interactive and immersive VR games related to science, technology, engineering and mathematics (STEM), i.e., virtual cells, a virtual F1 racing car, and vector geometry. These VR games are a part of the VARTeL apps designed in-house at NTU for STEM education. Quantitative and qualitative analyses are performed. A total of 156 students from Mechanical Engineering participated in the experiment. There are 15 participants selected for an interview after the experiment. Pre-tests and post-tests are performed using two different models, the developed VARTeL and the modified Technology-Rich Outcome-Focused Learning Environment Inventory (TROFLEI), in order to measure the efficiency of the VARTeL environment in Higher Education. Significant improvements of about 24.8% are observed for the post-tests over the pre-tests, which illustrate the effectiveness of the VARTeL for Engineering education. Details of the VR simulation games, methods of data collection, data analyses, as well as the experiment results are discussed. It is observed from the results that all the underlying scales of the modified TROFLEI are above the threshold for the ‘Good’ category, indicating that a very reliable questionnaire is designed in this research. The mean ‘Ideal’ values are about 0.7–2.6% higher than the mean ‘Actual’ values. The limitations of the experiment and future works with recommendations are also presented in this paper

    The Efficacy of Adalimumab as an Initial Treatment in Patients with Behçet’s Retinal Vasculitis

    Get PDF
    Background: No study has evaluated the effectiveness of Adalimumab (ADA) as first-line in treatment-naïve patients with retinal vasculitis due to Behçet’s Uveitis (BU).Objective: To compare the efficacy of ADA plus conventional therapy and conventional therapy alone as initial treatments in naïve BU patients characterized by retinal vasculitis.Methods: Medical records of BU patients characterized by retinal vasculitis treated with conventional therapy (CT, refers to glucocorticoid and immunosuppressive agents) alone or ADA plus conventional therapy with at least 6 months of follow-up between February 2015 and June 2020 were analyzed. Only patients who were first diagnosed with BU without previous systemic treatment were reviewed. The retinal vasculitis score based on fluorescein angiography (FA), best-corrected visual acuity, glucocorticoid-sparing effect, the number of relapses and ocular complications were evaluated.Results: A total of 45 patients (87 eyes) were included. Twenty-four patients (55.33%) in the CT group were treated with conventional therapy and 21 patients (46.67%) in the ADA group were treated with ADA plus conventional therapy. The inflammatory parameters improved in both groups. FA scores showed significantly greater improvement in ADA group than CT group (p < 0.001). The median number of relapses was significantly lower, and the duration of remission was longer in ADA group than CT group (p < 0.001). At the last visit, a significantly better BCVA improvement (p = 0.024), better inflammation control (anterior chamber inflammation p = 0.017 and vitritis p < 0.001) and lower daily glucocorticoid dosage (p = 0.005) were identified in patients received ADA therapy. In CT group, 1 patient suffered hepatitis B and tuberculosis, 1 had growth retardation, 1 patient had with osteoporosis, then followed by other mild AEs (mostly respiratory upper tract infections); while in ADA group, 1 patient experienced a mild pneumonia (n = 1) while milder AEs were represented mostly by respiratory upper tract infections followed by gastrointestinal discomfort.Conclusion: ADA plus conventional therapy achieved superiority over conventional therapy as initial treatment in naïve BU patients with retinal vasculitis

    A convolutional neural network-based auto-segmentation pipeline for breast cancer imaging

    Get PDF
    Medical imaging is crucial for the detection and diagnosis of breast cancer. Artificial intelligence and computer vision have rapidly become popular in medical image analyses thanks to technological advancements. To improve the effectiveness and efficiency of medical diagnosis and treatment, significant efforts have been made in the literature on medical image processing, segmentation, volumetric analysis, and prediction. This paper is interested in the development of a prediction pipeline for breast cancer studies based on 3D computed tomography (CT) scans. Several algorithms were designed and integrated to classify the suitability of the CT slices. The selected slices from patients were then further processed in the pipeline. This was followed by data generalization and volume segmentation to reduce the computation complexity. The selected input data were fed into a 3D U-Net architecture in the pipeline for analysis and volumetric predictions of cancer tumors. Three types of U-Net models were designed and compared. The experimental results show that Model 1 of U-Net obtained the highest accuracy at 91.44% with the highest memory usage; Model 2 had the lowest memory usage with the lowest accuracy at 85.18%; and Model 3 achieved a balanced performance in accuracy and memory usage, which is a more suitable configuration for the developed pipeline

    AaABF3, an Abscisic Acid–Responsive Transcription Factor, Positively Regulates Artemisinin Biosynthesis in Artemisia annua

    Get PDF
    Artemisinin is well known for its irreplaceable curative effect on the devastating parasitic disease, Malaria. This sesquiterpenoid is specifically produced in Chinese traditional herbal plant Artemisia annua. Earlier studies have shown that phytohormone abscisic acid (ABA) plays an important role in increasing the artemisinin content, but how ABA regulates artemisinin biosynthesis is still poorly understood. In this study, we identified that AaABF3 encoded an ABRE (ABA-responsive elements) binding factor. qRT-PCR analysis showed that AaABF3 was induced by ABA and expressed much higher in trichomes where artemisinin is synthesized and accumulated. To further investigate the mechanism of AaABF3 regulating the artemisinin biosynthesis, we carried out dual-luciferase analysis, yeast one-hybrid assay and electrophoretic mobility shift assay. The results revealed that AaABF3 could directly bind to the promoter of ALDH1 gene, which is a key gene in artemisinin biosynthesis, and activate the expression of ALDH1. Functional analysis revealed that overexpression of AaABF3 in A. annua enhanced the production of artemisinin, while RNA interference of AaABF3 resulted in decreased artemisinin content. Taken together, our results demonstrated that AaABF3 played an important role in ABA-regulated artemisinin biosynthesis through direct regulation of artemisinin biosynthesis gene, ALDH1

    Discovery of novel SOS1 inhibitors using machine learning

    Get PDF
    Overactivation of the rat sarcoma virus (RAS) signaling is responsible for 30% of all human malignancies. Son of sevenless 1 (SOS1), a crucial node in the RAS signaling pathway, could modulate RAS activation, offering a promising therapeutic strategy for RAS-driven cancers. Applying machine learning (ML)-based virtual screening (VS) on small-molecule databases, we selected a random forest (RF) regressor for its robustness and performance. Screening was performed with the L-series and EGFR-related datasets, and was extended to the Chinese National Compound Library (CNCL) with more than 1.4 million compounds. In addition to a series of documented SOS1-related molecules, we uncovered nine compounds that have an unexplored chemical framework and displayed inhibitory activity, with the most potent achieving more than 50% inhibition rate in the KRAS G12C/SOS1 PPI assay and an IC50 value in the proximity of 20 μg mL−1. Compared with the manner that known inhibitory agents bind to the target, hit compounds represented by CL01545365 occupy a unique pocket in molecular docking. An in silico drug-likeness assessment suggested that the compound has moderately favorable drug-like properties and pharmacokinetic characteristics. Altogether, our findings strongly support that, characterized by the distinctive binding modes, the recognition of novel skeletons from the carboxylic acid series could be candidates for developing promising SOS1 inhibitors

    Designing an educational metaverse: A case study of NTUniverse

    Get PDF
    An up-and-coming concept that seeks to transform how students learn about and study complex systems, as well as how industrial workers are trained, metaverse technology is characterized in this context by its use in virtual simulation and analysis. In this work, a virtual environment is created that duplicates real-world situations and enables immersive and interactive learning in the educational metaverse. For this purpose, we built a digital twin of the Nanyang Technological University (NTU) campus as a foundation, called NTUniverse. It is designed as an educational metaverse in which various academic and analytical applications are digitized as 3D content embedded within this virtual campus. The approach to digitally twinning educational systems and embedding them within virtual campuses enables remote and collaborative learning as well as professional technical skills training. It also makes feasible the analysis of abstract concepts, complicated structures, dynamic processes, and sensitive industrial procedures virtually, which is otherwise challenging if not impossible to perform in the real world. The work offers important insights into the behaviors and interactions of systems in the metaverse by evaluating design choices and user interests. NTUniverse is an attempt to explore a novel approach that addresses remote education and training challenges. Three efforts with NTUniverse will be discussed in this work, including (1) digitalization of the NTU campus; (2) campus train modelling and simulation; and (3) science, technology, engineering and mathematics education

    Impact of family integrated care on infants’ clinical outcomes in two children’s hospitals in China: a pre-post intervention study

    Get PDF
    © 2018 The Author(s). Background: Most Neonatal Intensive Care Units (NICUs) in China have restricted visiting policies for parents. This also implicates that parents are not involved in the care of their infant. Family Integrated Care (FIC), empowering parents in direct care delivery and decisions, is becoming the standard in NICUs in many countries and can improve quality-of-life and health outcomes of preterm infants. The aim of this study was to evaluate the impact of a FIC intervention on the clinical outcomes of preterm infants with Bronchopulmonary Dysplasia (BPD). Methods: A pre-post intervention study was conducted at NICUs in two Chinese children's hospitals. Infants with BPD were included: pre-intervention group (n = 134) from December 2015 to September 2016, post-intervention (FIC) group (n = 115) and their parents from October 2016 to June 2017. NICU nurses were trained between July and September 2016 to deliver the FIC intervention, including parent education and support. Parents had to be present and care for their infant minimal three hours a day. The infants' outcome measures were length-of-stay, breastfeeding, weight gain, respiratory and oxygen support, and parent hospital expenses. Results: Compared with control group (n = 134), the FIC group (n = 115) had significantly increased breastfeeding rates (83% versus 71%, p = 0.030), breastfeeding time (31 days versus 19 days, p < 0.001), enteral nutrition time (50 days versus 34 days, p < 0.001), weight gain (29 g/day versus 23 g/day, p = 0.002), and significantly lower respiratory support time (16 days versus 25 days, p < 0.001). Oxygen Exposure Time decreased but not significant (39 days versus 41 days p = 0.393). Parents hospital expenses in local Chinese RMB currency was not significant (84 K versus 88 K, p = 0.391). Conclusion: The results of our study suggests that FIC is feasible in two Chinese NICUs and might improve clinical outcomes of preterm infants with BPD. Further research is needed to include all infants admitted to NICUs and should include parent reported outcome measures. Our study may help other NICUs with limited parental access to implement FIC to enhance parental empowerment and involvement in the care of their infant
    • …
    corecore