33 research outputs found

    Demonstrating the high sensitivity of MoS2 monolayers in direct x-ray detectors

    Get PDF
    Two-dimensional transition metal dichalcogenides (TMDCs) are demonstrated to be appealing semiconductors for optoelectronic applications, thanks to their remarkable properties in the ultraviolet-visible spectral range. Interestingly, TMDCs have not yet been characterized when exposed to x rays, although they would be ideal candidates for optoelectronic applications in this spectral range. They benefit from the high cross section of the constituent heavy atoms, while keeping the absorption very low, due to the ultrathin structure of the film. This encourages the development of photodetectors based on TMDCs for several applications dealing with x rays, such as radioprotection, medical treatments, and diagnosis. Given the atomic thickness of TMDCs, they can be expected to perform well at low dose measurements with minimal perturbation of the radiation beam, which is required for in vivo applications. In this paper, the use of TMDCs as active materials for direct x-ray detection is demonstrated, using a photodetector based on a MoS2 monolayer (1L-MoS2). The detector shows a response to x rays in the range of 101–102 keV, at dose rates as low as fractions of mGy/s. The sensitivity of 1L-MoS2 reaches values in the range of 108–109 µC Gy−1 cm−3, overcoming the values reported for most of the organic and inorganic materials. To improve the x-ray photoresponse even further, the 1L-MoS2 was coupled with a polymeric film integrating a scintillator based on terbium-doped gadolinium oxysulfide (Gd2O2S:Tb). The resulting signal was three times larger, enabled by the indirect x ray to visible photoconversion mechanism. This paper might pave the way toward the production of ultrathin real-time dosimeters for in vivo applications.Peer Reviewe

    Zc3h10 regulates adipogenesis by controlling translation and F-actin/mitochondria interaction

    Get PDF
    The commitment of mesenchymal stem cells to preadipocytes is stimulated by hormonal induction. Preadipocytes induced to differentiate repress protein synthesis, remodel their cytoskeleton, and increase mitochondrial function to support anabolic pathways. These changes enable differentiation into mature adipocytes. Our understanding of the factors that coordinately regulate the early events of adipocyte differentiation remains incomplete. Here, by using multipronged approaches, we have identified zinc finger CCCH-type containing 10 (Zc3h10) as a critical regulator of the early stages of adipogenesis. Zc3h10 depletion in preadipocytes resulted in increased protein translation and impaired filamentous (F)-actin remodeling, with the latter detrimental effect leading to mitochondrial and metabolic dysfunction. These defects negatively affected differentiation to mature adipocytes. In contrast, Zc3h10 overexpression yielded mature adipocytes with remarkably increased lipid droplet size. Overall, our study establishes Zc3h10 as a fundamental proadipogenic transcription factor that represses protein synthesis and promotes F-actin/mitochondria dynamics to ensure proper energy metabolism and favor lipid accumulation

    A tunable delivery platform to provide local chemotherapy for pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating and painful cancers. It is often highly resistant to therapy owing to inherent chemoresistance and the desmoplastic response that creates a barrier of fibrous tissue preventing transport of chemotherapeutics into the tumor. The growth of the tumor in pancreatic cancer often leads to invasion of other organs and partial or complete biliary obstruction, inducing intense pain for patients and necessitating tumor resection or repeated stenting. Here, we have developed a delivery device to provide enhanced palliative therapy for pancreatic cancer patients by providing high concentrations of chemotherapeutic compounds locally at the tumor site. This treatment could reduce the need for repeated procedures in advanced PDAC patients to debulk the tumor mass or stent the obstructed bile duct. To facilitate clinical translation, we created the device out of currently approved materials and drugs. We engineered an implantable poly(lactic-co-glycolic)-based biodegradable device that is able to linearly release high doses of chemotherapeutic drugs for up to 60 days. We created five patient-derived PDAC cell lines and tested their sensitivity to approved chemotherapeutic compounds. These in vitro experiments showed that paclitaxel was the most effective single agent across all cell lines. We compared the efficacy of systemic and local paclitaxel therapy on the patient-derived cell lines in an orthotopic xenograft model in mice (PDX). In this model, we found up to a 12-fold increase in suppression of tumor growth by local therapy in comparison to systemic administration and reduce retention into off-target organs. Herein, we highlight the efficacy of a local therapeutic approach to overcome PDAC chemoresistance and reduce the need for repeated interventions and biliary obstruction by preventing local tumor growth. Our results underscore the urgent need for an implantable drug-eluting platform to deliver cytotoxic agents directly within the tumor mass as a novel therapeutic strategy for patients with pancreatic cancer. Keywords: Pancreatic cancer; Chemoresistance; Local delivery; Patient-derived xenograft; Paclitaxel; Poly(lactic-co-glycolic acid)National Institutes of Health (U.S.) (Grant P30-CA14051

    Mutagens interfere with microRNA maturation by inhibiting DICER. An in silico biology analysis.

    No full text
    none4Exposure to environmental mutagens results in alteration of microRNA expression mainly oriented towards down-regulation, as typically observed in cigarette smoke. However, the molecular mechanism triggering this event is still unknown. To shed light on this issue, we developed an 'in silico' analysis testing 25 established environmental mutagens (polycyclic aromatic hydrocarbons, heterocyclic compounds, nitrosoamines, morpholine, ethylnitrosurea, benzene derivatives, hydroxyl amines, alkenes) for their potential to interfere with the function of DICER, the enzyme involved in the cytoplasmic phase of microRNA maturation. In order to analyse the binding affinity between DICER and each mutagen, the three-dimensional bioinformatic structures of DICER-RNase III domains and of mutagens have been constructed. The binding affinity of mutagens for each DICER's RNase III domain was estimated by calculating the global contact-energy and the number of intermolecular contacts. These two parameters reflect the stability of the DICER-mutagen complexes. All the 25 mutagens tested form stable complexes with DICER, 20 of which form a complex with DICER A domain, that is more stable than those formed by DICER with its natural substrate, i.e. double strand short RNAs. These mutagens are benzo(a)pyrene diol epoxide, nitroimidazoles, fluorenes, naphthalene, morpholine, stilbenes, hydroxylamines, fecapentenes. In the case of exposure to mutagen mixtures (benzo(a)pyrene-diolepoxide and 4-acetylaminostilbene), synergistic or less than addictive effects occur depending on the docking order of the compounds. A group of 8 mutagens with the highest ability to interfere with this DICER function, was identified by hierarchical cluster analysis. This group included 1-ethyl-1-nitrosourea and 4-nitrosomorpholine. Herein, presented data support the view that mutagens interfere with microRNA maturation by binding DICER. This finding sheds light on a new epigenetic mechanism exerted by environmental mutagens in inducing cell damage.M. Ligorio;A. Izzotti;A. Pulliero;P. ArrigoM., Ligorio; Izzotti, Alberto; Pulliero, Alessandra; P., Arrig
    corecore