1,251 research outputs found

    Dielectric function of the semiconductor hole liquid: Full frequency and wave vector dependence

    Get PDF
    We study the dielectric function of the homogeneous semiconductor hole liquid of p-doped bulk III-V zinc-blende semiconductors within random phase approximation. The single-particle physics of the hole system is modeled by Luttinger's four-band Hamiltonian in its spherical approximation. Regarding the Coulomb-interacting hole liquid, the full dependence of the zero-temperature dielectric function on wave vector and frequency is explored. The imaginary part of the dielectric function is analytically obtained in terms of complicated but fully elementary expressions, while in the result for the real part nonelementary one-dimensional integrations remain to be performed. The correctness of these two independent calculations is checked via Kramers-Kronig relations. The mass difference between heavy and light holes, along with variations in the background dielectric constant, leads to dramatic alternations in the plasmon excitation pattern, and generically, two plasmon branches can be identified. These findings are the result of the evaluation of the full dielectric function and are not accessible via a high-frequency expansion. In the static limit a beating of Friedel oscillations between the Fermi wave numbers of heavy and light holes occurs.Comment: 16 pages, 11 figures included. Update: Minor additions and adjustments, published versio

    Viscous spreading of an inertial wave beam in a rotating fluid

    Full text link
    We report experimental measurements of inertial waves generated by an oscillating cylinder in a rotating fluid. The two-dimensional wave takes place in a stationary cross-shaped wavepacket. Velocity and vorticity fields in a vertical plane normal to the wavemaker are measured by a corotating Particule Image Velocimetry system. The viscous spreading of the wave beam and the associated decay of the velocity and vorticity envelopes are characterized. They are found in good agreement with the similarity solution of a linear viscous theory, derived under a quasi-parallel assumption similar to the classical analysis of Thomas and Stevenson [J. Fluid Mech. 54 (3), 495-506 (1972)] for internal waves

    Dielectric function of the semiconductor hole gas

    Get PDF
    We study the dielectric function of the homogeneous hole gas in p-doped zinc-blende III-V bulk semiconductors within random phase approximation with the valence band being modeled by Luttinger's Hamiltonian in the spherical approximation. In the static limit we find a beating of Friedel oscillations between the two Fermi momenta for heavy and light holes, while at large frequencies dramatic corrections to the plasmon dispersion occur.Comment: 4 pages, 1 figure included. Version to appear in Europhys. Let

    The Effect Of Delay Times On The Optimal Velocity Traffic Flow Behavior

    Full text link
    We have numerically investigated the effect of the delay times Ď„f\tau_f and Ď„s\tau_s of a mixture of fast and slow vehicles on the fundamental diagram of the optimal velocity model. The optimal velocity function of the fast cars depends not only on the headway of each car but also on the headway of the immediately preceding one. It is found that the small delay times have almost no effects, while, for sufficiently large delay time Ď„s\tau_s the current profile displays qualitatively five different forms depending on Ď„f\tau_f, Ď„s\tau_s and the fractions dfd_f and dsd_s of the fast and slow cars respectively. The velocity (current) exhibits first order transitions at low and/or high densities, from freely moving phase to the congested state, and from congested state to the jamming one respectively accompanied by the existence of a local minimal current. Furthermore, there exist a critical value of Ď„f\tau_f above which the metastability and hysteresis appear. The spatial-temporal traffic patterns present more complex structur

    Capillary-Gravity Waves on Depth-Dependent Currents: Consequences for the Wave Resistance

    Full text link
    We study theoretically the capillary-gravity waves created at the water-air interface by a small two-dimensional perturbation when a depth-dependent current is initially present in the fluid. Assuming linear wave theory, we derive a general expression of the wave resistance experienced by the perturbation as a function of the current profile in the case of an inviscid fluid. We then analyze and discuss in details the behavior of the wave resistance in the particular case of a linear current, a valid approximation for some wind generated currents.Comment: Submitted to EP

    Some Applications of Fractional Equations

    Full text link
    We present two observations related to theapplication of linear (LFE) and nonlinear fractional equations (NFE). First, we give the comparison and estimates of the role of the fractional derivative term to the normal diffusion term in a LFE. The transition of the solution from normal to anomalous transport is demonstrated and the dominant role of the power tails in the long time asymptotics is shown. Second, wave propagation or kinetics in a nonlinear media with fractal properties is considered. A corresponding fractional generalization of the Ginzburg-Landau and nonlinear Schrodinger equations is proposed.Comment: 11 page

    Density waves in dry granular media falling through a vertical pipe

    Full text link
    We report experimental measurements of density waves in granular materials flowing down in a capillary tube. The density wave regime occurs at intermediate flow rates between a low density free fall regime and a high compactness slower flow.Comment: LaTeX file, 17 pages, 6 EPS figures, Phys.Rev.E (Feb.1996

    Capillary-gravity waves: The effect of viscosity on the wave resistance

    Full text link
    The effect of viscosity on the wave resistance experienced by a 2d perturbation moving at uniform velocity over the free surface of a fluid is investigated. The analysis is based on Rayleigh's linearized theory of capillary-gravity waves. It is shown in particular that the wave resistance remains bounded as the velocity of the perturbation approches the minimun phase speed, unlike what is predicted by the inviscid theory.Comment: Europhysics Letters, in pres

    Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves

    Full text link
    The influence of an underlying current on 3-wave interactions of capillary water waves is studied. The fact that in irrotational flow resonant 3-wave interactions are not possible can be invalidated by the presence of an underlying current of constant non-zero vorticity. We show that: 1) wave trains in flows with constant non-zero vorticity are possible only for two-dimensional flows; 2) only positive constant vorticities can trigger the appearance of three-wave resonances; 3) the number of positive constant vorticities which do trigger a resonance is countable; 4) the magnitude of a positive constant vorticity triggering a resonance can not be too small.Comment: 6 pages, submitte

    Phase Transitions in Two-Dimensional Traffic Flow Models

    Get PDF
    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.Comment: RevTeX 3.0 file. Figures available upon request to e-address [email protected] (or 'dopico' or 'molera' or 'anxo', same node
    • …
    corecore