282 research outputs found

    The Furan Shuffling Hypothesis: A Biogenetic Proposal for Eremophilane Sesquiterpenoids

    Full text link
    Based on the structural similarities of the recently isolated eremophilane‐type sesquiterpenoids microsphaeropsisin B and C and the iso‐eremophilane periconianone C, a revised biogenetic hypothesis for C8–C11‐connected iso‐eremophilanes is presented and corroborated by strong experimental evidence. The first enantioselective total syntheses of microsphaeropsisin B and C were achieved starting from a known intermediate, whose synthesis was elaborated previously in the total synthesis of periconianone A, and in a total of 15 steps starting from γ‐hydroxy carvone. Mild reaction conditions for the subsequent α‐ketol rearrangement not only resulted in the herein proposed conversion of microsphaeropsisin B into periconianone C, but also in the conversion of microsphaeropsisin C into 4‐epi‐periconianone C

    Clinical impact of tissue sodium storage

    Get PDF
    Abstract: In recent times, the traditional nephrocentric, two-compartment model of body sodium has been challenged by long-term sodium balance studies and experimental work on the dermal interstitium and endothelial surface layer. In the new paradigm, sodium can be stored without commensurate water retention in the interstitium and endothelial surface layer, forming a dynamic third compartment for sodium. This has important implications for sodium homeostasis, osmoregulation and the hemodynamic response to salt intake. Sodium storage in the skin and endothelial surface layer may function as a buffer during periods of dietary depletion and excess, representing an extra-renal mechanism regulating body sodium and water. Interstitial sodium storage may also serve as a biomarker for sodium sensitivity and cardiovascular risk, as well as a target for hypertension treatment. Furthermore, sodium storage may explain the limitations of traditional techniques used to quantify sodium intake and determine infusion strategies for dysnatraemias. This review is aimed at outlining these new insights into sodium homeostasis, exploring their implications for clinical practice and potential areas for further research for paediatric and adult populations

    Diminished antiproteinuric effect of the angiotensin receptor blocker losartan during high potassium intake in patients with CKD

    Get PDF
    Background: Angiotensin II type 1 receptor blockers (ARBs) lower blood pressure (BP) and proteinuria and reduce renal disease progression in many-but not all-patients. Reduction of dietary sodium intake improves these effects of ARBs. Dietary potassium intake affects BP and proteinuria. We set out to address the effect of potassium intake on BP and proteinuria response to losartan in non-diabetic proteinuric chronic kidney disease (CKD) patients. Methods: We performed a post hoc analysis of a placebo-controlled interventional cross-over study in 33 non-diabetic proteinuric patients (baseline mean arterial pressure and proteinuria: 105 mmHg and 3.8 g/day, respectively). Patients were treated for 6 weeks with placebo, losartan and losartan/hydrochlorothiazide (HCT), combined with a habitual (∌200 mmol/day) and low-sodium (LS) diet (<100 mmol/day), in randomized order. To analyse the effects of potassium intake, we categorized patients based on median split of 24-h urinary potassium excretion, reflecting potassium intake. Results: Mean potassium intake was stable during all six treatment periods. Losartan and losartan/HCT lowered BP and proteinuria in all treatment groups. Patients with high potassium intake showed no difference in the BP effects compared with patients with low potassium intake. The antiproteinuric response to losartan monotherapy and losartan combined with HCT during the habitual sodium diet was significantly diminished in patients with high potassium intake (20% versus 41%, P = 0.011; and 48% versus 64%, P = 0.036). These differences in antiproteinuric response abolished when shifting to the LS diet. Conclusions: In proteinuric CKD patients, the proteinuria, but not BP-lowering response to losartan during a habitual high-sodium diet was hampered during high potassium intake. Differences disappeared after sodium status change by LS diet

    Diagnostic Yield of Next-Generation Sequencing in Patients With Chronic Kidney Disease of Unknown Etiology

    Get PDF
    Advances in next-generation sequencing (NGS) techniques, including whole exome sequencing, have facilitated cost-effective sequencing of large regions of the genome, enabling the implementation of NGS in clinical practice. Chronic kidney disease (CKD) is a major contributor to global burden of disease and is associated with an increased risk of morbidity and mortality. CKD can be caused by a wide variety of primary renal disorders. In about one in five CKD patients, no primary renal disease diagnosis can be established. Moreover, recent studies indicate that the clinical diagnosis may be incorrect in a substantial number of patients. Both the absence of a diagnosis or an incorrect diagnosis can have therapeutic implications. Genetic testing might increase the diagnostic accuracy in patients with CKD, especially in patients with unknown etiology. The diagnostic utility of NGS has been shown mainly in pediatric CKD cohorts, while emerging data suggest that genetic testing can also be a valuable diagnostic tool in adults with CKD. In addition to its implications for unexplained CKD, NGS can contribute to the diagnostic process in kidney diseases with an atypical presentation, where it may lead to reclassification of the primary renal disease diagnosis. So far, only a few studies have reported on the diagnostic yield of NGS-based techniques in patients with unexplained CKD. Here, we will discuss the potential diagnostic role of gene panels and whole exome sequencing in pediatric and adult patients with unexplained and atypical CKD

    Dietary potassium and the kidney:lifesaving physiology

    Get PDF
    Potassium often has a negative connotation in Nephrology as patients with chronic kidney disease (CKD) are prone to develop hyperkalaemia. Approaches to the management of chronic hyperkalaemia include a low potassium diet or potassium binders. Yet, emerging data indicate that dietary potassium may be beneficial for patients with CKD. Epidemiological studies have shown that a higher urinary potassium excretion (as proxy for higher dietary potassium intake) is associated with lower blood pressure (BP) and lower cardiovascular risk, as well as better kidney outcomes. Considering that the composition of our current diet is characterized by a high sodium and low potassium content, increasing dietary potassium may be equally important as reducing sodium. Recent studies have revealed that dietary potassium modulates the activity of the thiazide-sensitive sodium-chloride cotransporter in the distal convoluted tubule (DCT). The DCT acts as a potassium sensor to control the delivery of sodium to the collecting duct, the potassium-secreting portion of the kidney. Physiologically, this allows immediate kaliuresis after a potassium load, and conservation of potassium during potassium deficiency. Clinically, it provides a novel explanation for the inverse relationship between dietary potassium and BP. Moreover, increasing dietary potassium intake can exert BP-independent effects on the kidney by relieving the deleterious effects of a low potassium diet (inflammation, oxidative stress and fibrosis). The aim of this comprehensive review is to link physiology with clinical medicine by proposing that the same mechanisms that allow us to excrete an acute potassium load also protect us from hypertension, cardiovascular disease and CKD

    Indomethacin Reduces Glomerular and Tubular Damage Markers but Not Renal Inflammation in Chronic Kidney Disease Patients: A Post-Hoc Analysis

    Get PDF
    Under specific conditions non-steroidal anti-inflammatory drugs (NSAIDs) may be used to lower therapy-resistant proteinuria. The potentially beneficial anti-proteinuric, tubulo-protective, and anti-inflammatory effects of NSAIDs may be offset by an increased risk of (renal) side effects. We investigated the effect of indomethacin on urinary markers of glomerular and tubular damage and renal inflammation. We performed a post-hoc analysis of a prospective open-label crossover study in chronic kidney disease patients (n = 12) with mild renal function impairment and stable residual proteinuria of 4.7±4.1 g/d. After a wash-out period of six wks without any RAAS blocking agents or other therapy to lower proteinuria (untreated proteinuria (UP)), patients subsequently received indomethacin 75 mg BID for 4 wks (NSAID). Healthy subjects (n = 10) screened for kidney donation served as controls. Urine and plasma levels of total IgG, IgG4, KIM-1, beta-2-microglobulin, H-FABP, MCP-1 and NGAL were determined using ELISA. Following NSAID treatment, 24 h -urinary excretion of glomerular and proximal tubular damage markers was reduced in comparison with the period without anti-proteinuric treatment (total IgG: UP 131[38–513] vs NSAID 38[17–218] mg/24 h, p<0.01; IgG4: 50[16–68] vs 10[1–38] mg/24 h, p<0.001; beta-2-microglobulin: 200[55–404] vs 50[28–110] ug/24 h, p = 0.03; KIM-1: 9[5]–[14] vs 5[2]–[9] ug/24 h, p = 0.01). Fractional excretions of these damage markers were also reduced by NSAID. The distal tubular marker H-FABP showed a trend to reduction following NSAID treatment. Surprisingly, NSAID treatment did not reduce urinary excretion of the inflammation markers MCP-1 and NGAL, but did reduce plasma MCP-1 levels, resulting in an increased fractional MCP-1 excretion. In conclusion, the anti-proteinuric effect of indomethacin is associated with reduced urinary excretion of glomerular and tubular damage markers, but not with reduced excretion of renal inflammation markers. Future studies should address whether the short term glomerulo- and tubulo-protective effects as observed outweigh the possible side-effects of NSAID treatment on the long term
    • 

    corecore