16 research outputs found
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Genome-wide identification of the bHLH transcription factor family in Rosa persica and response to low-temperature stress
Background Basic helix-loop-helix (bHLH) transcription factors are involved in plant growth and development, secondary metabolism, and abiotic stress responses have been studied in a variety of plants. Despite their importance in plant biology, the roles and expression patterns of bHLH family genes in Rosa persica have not been determined. Methods In this study, the RbebHLH family genes were systematically analyzed using bioinformatics methods, and their expression patterns under low-temperature stress were analyzed by transcriptome and related physiological index measurements. Results In total, 142 RbebHLHs were identified in the genome of R. persica, distributed on seven chromosomes. Phylogenetic analysis including orthologous genes in Arabidopsis divided RbebHLHs into 21 subfamilies, with similar structures and motifs within a subfamily. A collinearity analysis revealed seven tandem duplications and 118 segmental duplications in R. persica and 127, 150, 151, 172, and 164 segmental duplications between R. persica and Arabidopsis thaliana, Prunus mume, Fragaria vesca, Rosa chinensis, and Prunus persica, respectively. A number of cis-regulatory elements associated with abiotic stress response and hormone response were identified in RbebHLHs, and 21 RbebHLHs have potential interactions with the CBF family. In addition, the expression results showed that part of bHLH may regulate the tolerance of R. persica to low-temperature stress through the jasmonic acid and pathway. Transcriptomic data showed that the expression levels of different RbebHLHs varied during overwintering, and the expression of some RbebHLHs was significantly correlated with relative conductivity and MDA content, implying that RbebHLHs play important regulatory roles in R. persica response to low-temperature stress. Overall, this study provides valuable insights into the study of RbebHLHs associated with low-temperature stress
Effects of Low Molecular Weight Yeast β-Glucan on Antioxidant and Immunological Activities in Mice
To evaluate the antioxidant and immune effects of low molecular yeast β-glucan on mice, three sulfated glucans from Saccharomyces cerevisiae (sGSCs) with different molecular weight (MW) and degrees of sulfation (DS) were prepared. The structures of the sGSCs were analyzed through high performance liquid chromatography-gel permeation chromatography (HPLC-GPC) and Fourier transform infrared spectroscopy (FTIR). sGSC1, sGSC2, and sGSC3 had MW of 12.9, 16.5 and 19.2 kDa, respectively, and DS of 0.16, 0.24 and 0.27, respectively. In vitro and in vivo experiments were conducted to evaluate the antioxidant and immunological activities of the sGSCs. In vitro experiment, the reactive oxygen species (ROS) scavenging activities were determined. In vivo experiment, 50 male BALB/c mice were divided into five groups. The sGSC1, sGSC2 and sGSC3 treatment groups received the corresponding sGSCs at 50 mg/kg/day each. The GSC (glucans from Saccharomyces cerevisiae) treatment group received 50 mg/kg/day GSC. The normal control group received equal volume of physiological saline solution. All treatments were administered intragastrically for 14 day. Results showed that sGSC1, sGSC2 and sGSC3 can scavenge 1,1-diphenyl-2-picryl-hydrazyl (DPPH), superoxide, and hydroxyl radicals in vitro. The strength of the radical scavenging effects of the sGSCs was in the order of sGSC1 > sGSC2 > sGSC3. Oral administration of sGSC1 significantly improved serum catalase (CAT) and glutathione peroxidase (GSH-Px) activities and decreased malondialdehyde (MDA) level in mice. sGSC1 significantly improved the spleen and thymus indexes and the lymphocyte proliferation, effectively enhanced the percentage of CD4+ T cells, decreased the percentage of CD8+ T cells, and elevated the CD4+/CD8+ ratio. sGSC1 significantly promoted the secretion of IL-2 and IFN-γ. These results indicate that sGSC1 with low MW and DS has better antioxidant and immunological activities than the other sGSCs, and sGSC1 could be used as a new antioxidant and immune-enhancing agent