46 research outputs found

    Gossamer roadmap technology reference study for a solar polar mission

    Get PDF
    A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given solar polar observation angle within a given timeframe and thus to derive mass allocations for the remaining spacecraft sub-systems, that is excluding the solar sail sub-system. A parametric, bottom-up, system mass budget analysis is then used to establish the required sail technology to deliver a range of science payloads, and to establish where such payloads can be delivered to within a given timeframe. It is found that a solar polar mission requires a solar sail of side-length 100 – 125 m to deliver a ‘sufficient value’ minimum science payload, and that a 2. 5μm sail film substrate is typically required, however the design is much less sensitive to the boom specific mass

    Determination of 3D Trajectories of Knots in Solar Prominences Using MSDP Data

    Get PDF
    In this paper we present a new method of restoration of the true thee-dimensional trajectories of the prominence knots based on ground-based observations taken with a single telescope, which is equipped with a Multi-Channel Subtractive Double Pass imaging spectrograph. Our method allows to evaluate true three-dimensional trajectories of the prominence knots without any assumptions concerning the shape of the trajectories or dynamics of the motion. The reconstructed trajectories of several knots observed in three prominences are presented.Comment: 14 pages, 9 figures, accepted for publication in Solar Physic

    Solar Stereoscopy with STEREO/EUVI A and B spacecraft from small (6 deg) to large (170 deg) spacecraft separation angles

    Full text link
    We performed for the first time stereoscopic triangulation of coronal loops in active regions over the entire range of spacecraft separation angles (αsep6,43,89,127\alpha_{sep}\approx 6^\circ, 43^\circ, 89^\circ, 127^\circ, and 170170^\circ). The accuracy of stereoscopic correlation depends mostly on the viewing angle with respect to the solar surface for each spacecraft, which affects the stereoscopic correspondence identification of loops in image pairs. From a simple theoretical model we predict an optimum range of αsep22125\alpha_{sep} \approx 22^\circ-125^\circ, which is also experimentally confirmed. The best accuracy is generally obtained when an active region passes the central meridian (viewed from Earth), which yields a symmetric view for both STEREO spacecraft and causes minimum horizontal foreshortening. For the extended angular range of αsep6127\alpha_{sep}\approx 6^\circ-127^{\circ} we find a mean 3D misalignment angle of μPF2139\mu_{PF} \approx 21^\circ-39^\circ of stereoscopically triangulated loops with magnetic potential field models, and μFFF1521\mu_{FFF} \approx 15^\circ-21^\circ for a force-free field model, which is partly caused by stereoscopic uncertainties μSE9\mu_{SE} \approx 9^\circ. We predict optimum conditions for solar stereoscopy during the time intervals of 2012--2014, 2016--2017, and 2021--2023.Comment: Solar Physics, (in press), 22 pages, 9 figure

    Signatures of the slow solar wind streams from active regions in the inner corona

    Full text link
    Some of local sources of the slow solar wind can be associated with spectroscopically detected plasma outflows at edges of active regions accompanied with specific signatures in the inner corona. The EUV telescopes (e.g. SPIRIT/CORONAS-F, TESIS/CORONAS-Photon and SWAP/PROBA2) sometimes observed extended ray-like structures seen at the limb above active regions in 1MK iron emission lines and described as "coronal rays". To verify the relationship between coronal rays and plasma outflows, we analyze an isolated active region (AR) adjacent to small coronal hole (CH) observed by different EUV instruments in the end of July - beginning of August 2009. On August 1 EIS revealed in the AR two compact outflows with the Doppler velocities V =10-30 km/s accompanied with fan loops diverging from their regions. At the limb the ARCH interface region produced coronal rays observed by EUVI/STEREO-A on July 31 as well as by TESIS on August 7. The rays were co-aligned with open magnetic field lines expanded to the streamer stalks. Using the DEM analysis, it was found that the fan loops diverged from the outflow regions had the dominant temperature of ~1 MK, which is similar to that of the outgoing plasma streams. Parameters of the solar wind measured by STEREO-B, ACE, WIND, STEREO-A were conformed with identification of the ARCH as a source region at the Wang-Sheeley-Arge map of derived coronal holes for CR 2086. The results of the study support the suggestion that coronal rays can represent signatures of outflows from ARs propagating in the inner corona along open field lines into the heliosphere.Comment: Accepted for publication in Solar Physics; 31 Pages; 13 Figure

    Multiwavelength Study of M8.9/3B Solar Flare from AR NOAA 10960

    Full text link
    We present a multi-wavelength analysis of a long duration white-light solar flare (M8.9/3B) event that occurred on 4 June 2007 from NOAA AR 10960. The flare was observed by several spaceborne instruments, namely SOHO/MDI, Hinode/SOT, TRACE and STEREO/SECCHI. The flare was initiated near a small, positive-polarity, satellite sunspot at the centre of the AR, surrounded by opposite-polarity field regions. MDI images of the AR show considerable amount of changes in a small positive-polarity sunspot of delta configuration during the flare event. SOT/G-band (4305 A) images of the sunspot also suggest the rapid evolution of the positive-polarity sunspot with highly twisted penumbral filaments before the flare event, which were oriented in the counterclockwise direction. It shows the change in orientation and also remarkable disappearance of twisted penumbral filaments (~35-40%) and enhancement in umbral area (~45-50%) during the decay phase of the flare. TRACE and SECCHI observations reveal the successive activations of two helical twisted structures associated with this sunspot, and the corresponding brightening in the chromosphere as observed by the time-sequence images of SOT/Ca II H line (3968 A). The secondary-helical twisted structure is found to be associated with the M8.9 flare event. The brightening starts 6-7 min prior to the flare maximum with the appearance of secondary helical-twisted structure. The flare intensity maximizes as this structure moves away from the AR. This twisted flux-tube associated with the flare triggering, is found to be failed in eruption. The location of the flare is found to coincide with the activation site of the helical twisted structures. We conclude that the activations of successive helical twists in the magnetic flux tubes/ropes plays a crucial role in the energy build-up process and triggering of M-class solar flare without a CME.Comment: 22 pages, 12 figures, Accepted for Publication in Solar Physic

    3D evolution of a filament disappearance event observed by STEREO

    Full text link
    A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the southern hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories in particular by THEMIS. One day before the disappearance, Hα\alpha observations showed up and down flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4 degrees, showed quite different views of this untwisting flux rope in He II 304 \AA\ images. Here, we reconstruct the 3D geometry of the filament during its eruption phase using STEREO EUV He II 304 \AA\ images and find that the filament was highly inclined to the solar normal. The He II 304 \AA\ movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km s1^{-1}, during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe XII 195 \AA\ images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope

    Large-scale Bright Fronts in the Solar Corona: A Review of "EIT waves"

    Full text link
    ``EIT waves" are large-scale coronal bright fronts (CBFs) that were first observed in 195 \AA\ images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the \emph{Solar and Heliospheric Observatory (SOHO)}. Commonly called ``EIT waves", CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100--700 km s1^{-1} with front widths of 50-100 Mm. As their speed is greater than the quiet coronal sound speed (csc_s\leq200 km s1^{-1}) and comparable to the local Alfv\'{e}n speed (vAv_A\leq1000 km s1^{-1}), they were initially interpreted as fast-mode magnetoacoustic waves (vf=(cs2+vA2)1/2v_{f}=(c_s^2 + v_A^2)^{1/2}). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.Comment: 34 pages, 19 figure

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Contributions to the cross shock electric field at supercritical perpendicular shocks: Impact of the pickup ions

    Full text link
    A particle-in-cell code is used to examine contributions of the pickup ions (PIs) and the solar wind ions (SWs) to the cross shock electric field at the supercritical, perpendicular shocks. The code treats the pickup ions self-consistently as a third component. Herein, two different runs with relative pickup ion density of 25% and 55% are presented in this paper. Present preliminary results show that: (1) in the low percentage (25%) pickup ion case, the shock front is nonstationary. During the evolution of this perpendicular shock, a nonstationary foot resulting from the reflected solar wind ions is formed in front of the old ramp, and its amplitude becomes larger and larger. At last, the nonstationary foot grows up into a new ramp and exceeds the old one. Such a nonstationary process can be formed periodically. hen the new ramp begins to be formed in front of the old ramp, the Hall term mainly contributed by the solar wind ions becomes more and more important. The electric field Ex is dominated by the Hall term when the new ramp exceeds the old one. Furthermore, an extended and stationary foot in pickup ion gyro-scale is located upstream of the nonstationary/self-reforming region within the shock front, and is always dominated by the Lorentz term contributed by the pickup ions; (2) in the high percentage (55%) pickup ion case, the amplitude of the stationary foot is increased as expected. One striking point is that the nonstationary region of the shock front evidenced by the self-reformation disappears. Instead, a stationary extended foot dominated by Lorentz term contributed by the pickup ions, and a tationary ramp dominated by Hall term contributed by the solar wind ions are clearly evidenced. The significance of the cross electric field on ion dynamics is also discussed.Comment: 11 pages, 6 figs and 1 table. This paper will be published in the journal: Astrophysics and Space Scienc

    Solar parameters for modeling interplanetary background

    Full text link
    The goal of the Fully Online Datacenter of Ultraviolet Emissions (FONDUE) Working Team of the International Space Science Institute in Bern, Switzerland, was to establish a common calibration of various UV and EUV heliospheric observations, both spectroscopic and photometric. Realization of this goal required an up-to-date model of spatial distribution of neutral interstellar hydrogen in the heliosphere, and to that end, a credible model of the radiation pressure and ionization processes was needed. This chapter describes the solar factors shaping the distribution of neutral interstellar H in the heliosphere. Presented are the solar Lyman-alpha flux and the solar Lyman-alpha resonant radiation pressure force acting on neutral H atoms in the heliosphere, solar EUV radiation and the photoionization of heliospheric hydrogen, and their evolution in time and the still hypothetical variation with heliolatitude. Further, solar wind and its evolution with solar activity is presented in the context of the charge exchange ionization of heliospheric hydrogen, and in the context of dynamic pressure variations. Also the electron ionization and its variation with time, heliolatitude, and solar distance is presented. After a review of all of those topics, we present an interim model of solar wind and the other solar factors based on up-to-date in situ and remote sensing observations of solar wind. Results of this effort will further be utilised to improve on the model of solar wind evolution, which will be an invaluable asset in all heliospheric measurements, including, among others, the observations of Energetic Neutral Atoms by the Interstellar Boundary Explorer (IBEX).Comment: Chapter 2 in the planned "Cross-Calibration of Past and Present Far UV Spectra of Solar System Objects and the Heliosphere", ISSI Scientific Report No 12, ed. R.M. Bonnet, E. Quemerais, M. Snow, Springe
    corecore