We present a multi-wavelength analysis of a long duration white-light solar
flare (M8.9/3B) event that occurred on 4 June 2007 from NOAA AR 10960. The
flare was observed by several spaceborne instruments, namely SOHO/MDI,
Hinode/SOT, TRACE and STEREO/SECCHI. The flare was initiated near a small,
positive-polarity, satellite sunspot at the centre of the AR, surrounded by
opposite-polarity field regions. MDI images of the AR show considerable amount
of changes in a small positive-polarity sunspot of delta configuration during
the flare event. SOT/G-band (4305 A) images of the sunspot also suggest the
rapid evolution of the positive-polarity sunspot with highly twisted penumbral
filaments before the flare event, which were oriented in the counterclockwise
direction. It shows the change in orientation and also remarkable disappearance
of twisted penumbral filaments (~35-40%) and enhancement in umbral area
(~45-50%) during the decay phase of the flare. TRACE and SECCHI observations
reveal the successive activations of two helical twisted structures associated
with this sunspot, and the corresponding brightening in the chromosphere as
observed by the time-sequence images of SOT/Ca II H line (3968 A). The
secondary-helical twisted structure is found to be associated with the M8.9
flare event. The brightening starts 6-7 min prior to the flare maximum with the
appearance of secondary helical-twisted structure. The flare intensity
maximizes as this structure moves away from the AR. This twisted flux-tube
associated with the flare triggering, is found to be failed in eruption. The
location of the flare is found to coincide with the activation site of the
helical twisted structures. We conclude that the activations of successive
helical twists in the magnetic flux tubes/ropes plays a crucial role in the
energy build-up process and triggering of M-class solar flare without a CME.Comment: 22 pages, 12 figures, Accepted for Publication in Solar Physic