656 research outputs found

    Selection of radio sources for Venus balloon-Pathfinder Delta-DOR navigation at 1.7 GHz

    Get PDF
    In order to increase the success rate of the Delta-DOR (Delta-Differential One-way Range) VLBI navigational support for the French-Soviet Venus Balloon and Halley Pathfinder projects, forty-four extragalactic radio sources were observed in advance of these projects to determine which were suitable for use as reference sources. Of these forty-four radio sources taken from the existing JPL radio source catalogue, thirty-six were determined to be of sufficient strength for use in Delta-DOR VLBI navigation

    Global Asymmetry of the Heliosphere

    Get PDF
    Opher et al. 2006 showed that an interstellar magnetic field parallel to the plane defined by the deflection of interstellar hydrogen atoms can produce a north/south asymmetry in the distortion of the solar wind termination shock. This distortion is consistent with Voyager 1 and Voyager 2 observations of the direction of field-aligned streaming of the termination shock particles upstream the shock. The model also indicates that such a distortion will result in a significant north/south asymmetry in the distance to the shock and the thickness of heliosheath. The two Voyager spacecraft should reveal the nature and degree of the asymmetry in the termination shock and heliosheath.Comment: 6 pages, 5 figures, AIP Proceedings of the 5th IGPP "The Physics of the Inner Heliosheath: Voyager Observations, Theory and Future Prospects

    Local magnetic divertor for control of the plasma-limiter interaction in a tokamak

    Get PDF
    An experiment is described in which plasma flow to a tokamak limiter is controlled through the use of a local toroidal divertor coil mounted inside the limiter itself. This coil produces a local perturbed field B_C approximately equal to the local unperturbed toroidal field B_T ≃ 3 kG, such that when B_C adds to B_T the field lines move into the limiter and the local plasma flow to it increases by a factor as great as 1.6, and when B_C subtracts from B_T the field lines move away from the limiter and the local plasma flow to it decreases by as much as a factor of 4. A simple theoretical model is used to interpret these results. Since these changes occur without significantly affecting global plasma confinement, such a control scheme may be useful for optimizing the performance of pumped limiters

    A Passive Probe for Subsurface Oceans and Liquid Water in Jupiter's Icy Moons

    Full text link
    We describe an interferometric reflectometer method for passive detection of subsurface oceans and liquid water in Jovian icy moons using Jupiter's decametric radio emission (DAM). The DAM flux density exceeds 3,000 times the galactic background in the neighborhood of the Jovian icy moons, providing a signal that could be used for passive radio sounding. An instrument located between the icy moon and Jupiter could sample the DAM emission along with its echoes reflected in the ice layer of the target moon. Cross-correlating the direct emission with the echoes would provide a measurement of the ice shell thickness along with its dielectric properties. The interferometric reflectometer provides a simple solution to sub-Jovian radio sounding of ice shells that is complementary to ice penetrating radar measurements better suited to measurements in the anti-Jovian hemisphere that shadows Jupiter's strong decametric emission. The passive nature of this technique also serves as risk reduction in case of radar transmitter failure. The interferometric reflectometer could operate with electrically short antennas, thus extending ice depth measurements to lower frequencies, and potentially providing a deeper view into the ice shells of Jovian moons.Comment: Submitted to Icaru

    Hypercube matrix computation task

    Get PDF
    The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture

    Hypercube technology

    Get PDF
    The JPL designed MARKIII hypercube supercomputer has been in application service since June 1988 and has had successful application to a broad problem set including electromagnetic scattering, discrete event simulation, plasma transport, matrix algorithms, neural network simulation, image processing, and graphics. Currently, problems that are not homogeneous are being attempted, and, through this involvement with real world applications, the software is evolving to handle the heterogeneous class problems efficiently

    Performance of single photon-counting X-ray charge coupled devices

    Get PDF
    Results of intial performance tests on X-ray sensing properties of charge-coupled devices (CCDs) are presented. CCDs have demonstrated excellent spatial resolution and good spectral resolution, superior to that of non-imaging proportional counters

    Compact, lensless digital holographic microscope for remote microbiology

    Get PDF
    In situ investigation of microbial life in extreme environments can be carried out with microscopes capable of imaging 3-dimensional volumes and tracking particle motion. Here we present a lensless digital holographic microscope approach that provides roughly 1.5 micron resolution in a compact, robust package suitable for remote deployment. High resolution is achieved by generating high numerical-aperture input beams with radial gradient-index rod lenses. The ability to detect and track prokaryotes was explored using bacterial strains of two different sizes. In the larger strain, a variety of motions were seen, while the smaller strain was used to demonstrate a detection capability down to micron scales
    corecore