228 research outputs found

    Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools

    Get PDF
    Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals

    Synthetic retinal analogues modify the spectral and kinetic characteristics of microbial rhodopsin optogenetic tools

    Get PDF
    Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals

    Alcohol consumption and lifetime change in cognitive ability:a gene × environment interaction study

    Get PDF
    Studies of the effect of alcohol consumption on cognitive ability are often confounded. One approach to avoid confounding is the Mendelian randomization design. Here, we used such a design to test the hypothesis that a genetic score for alcohol processing capacity moderates the association between alcohol consumption and lifetime change in cognitive ability. Members of the Lothian Birth Cohort 1936 completed the same test of intelligence at age 11 and 70 years. They were assessed for recent alcohol consumption in later life and genotyped for a set of four single-nucleotide polymorphisms in three alcohol dehydrogenase genes. These variants were unrelated to late-life cognition or to socioeconomic status. We found a significant gene × alcohol consumption interaction on lifetime cognitive change (p = 0.007). Individuals with higher genetic ability to process alcohol showed relative improvements in cognitive ability with more consumption, whereas those with low processing capacity showed a negative relationship between cognitive change and alcohol consumption with more consumption. The effect of alcohol consumption on cognitive change may thus depend on genetic differences in the ability to metabolize alcohol

    Increased ultra-rare variant load in an isolated Scottish population impacts exonic and regulatory regions

    Get PDF
    Human population isolates provide a snapshot of the impact of historical demographic processes on population genetics. Such data facilitate studies of the functional impact of rare sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of the VIKING cohort, a representative collection of samples from the isolated Shetland population in northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish population. Our analyses reveal the strong contributions played by the founder effect and genetic drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of purifying selection during the evolutionary history of the Shetland isolate. We demonstrate enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that gene expression patterns may diverge relatively rapidly in human isolates

    Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults

    Get PDF
    The molecular factors which control circulating levels of inflammatory proteins are not well understood. Furthermore, association studies between molecular probes and human traits are often performed by linear model-based methods which may fail to account for complex structure and interrelationships within molecular datasets.In this study, we perform genome- and epigenome-wide association studies (GWAS/EWAS) on the levels of 70 plasma-derived inflammatory protein biomarkers in healthy older adults (Lothian Birth Cohort 1936; n = 876; Olink® inflammation panel). We employ a Bayesian framework (BayesR+) which can account for issues pertaining to data structure and unknown confounding variables (with sensitivity analyses using ordinary least squares- (OLS) and mixed model-based approaches). We identified 13 SNPs associated with 13 proteins (n = 1 SNP each) concordant across OLS and Bayesian methods. We identified 3 CpG sites spread across 3 proteins (n = 1 CpG each) that were concordant across OLS, mixed-model and Bayesian analyses. Tagged genetic variants accounted for up to 45% of variance in protein levels (for MCP2, 36% of variance alone attributable to 1 polymorphism). Methylation data accounted for up to 46% of variation in protein levels (for CXCL10). Up to 66% of variation in protein levels (for VEGFA) was explained using genetic and epigenetic data combined. We demonstrated putative causal relationships between CD6 and IL18R1 with inflammatory bowel disease and between IL12B and Crohn’s disease. Our data may aid understanding of the molecular regulation of the circulating inflammatory proteome as well as causal relationships between inflammatory mediators and disease

    A GABAergic and peptidergic sleep neuron as a locomotion stop neuron with compartmentalized Ca2+dynamics.

    No full text
    Animals must slow or halt locomotion to integrate sensory inputs or to change direction. In Caenorhabditis elegans, the GABAergic and peptidergic neuron RIS mediates developmentally timed quiescence. Here, we show RIS functions additionally as a locomotion stop neuron. RIS optogenetic stimulation caused acute and persistent inhibition of locomotion and pharyngeal pumping, phenotypes requiring FLP-11 neuropeptides and GABA. RIS photoactivation allows the animal to maintain its body posture by sustaining muscle tone, yet inactivating motor neuron oscillatory activity. During locomotion, RIS axonal Ca2+ signals revealed functional compartmentalization: Activity in the nerve ring process correlated with locomotion stop, while activity in a branch correlated with induced reversals. GABA was required to induce, and FLP-11 neuropeptides were required to sustain locomotion stop. RIS attenuates neuronal activity and inhibits movement, possibly enabling sensory integration and decision making, and exemplifies dual use of one cell across development in a compact nervous system

    Molecular genetic contributions to socioeconomic status and intelligence

    Get PDF
    Education, socioeconomic status, and intelligence are commonly used as predictors of health outcomes, social environment, and mortality. Education and socioeconomic status are typically viewed as environmental variables although both correlate with intelligence, which has a substantial genetic basis. Using data from 6815 unrelated subjects from the Generation Scotland study, we examined the genetic contributions to these variables and their genetic correlations. Subjects underwent genome-wide testing for common single nucleotide polymorphisms (SNPs). DNA-derived heritability estimates and genetic correlations were calculated using the ‘Genome-wide Complex Trait Analyses’ (GCTA) procedures. 21% of the variation in education, 18% of the variation in socioeconomic status, and 29% of the variation in general cognitive ability was explained by variation in common SNPs (SEs ~ 5%). The SNP-based genetic correlations of education and socioeconomic status with general intelligence were 0.95 (SE 0.13) and 0.26 (0.16), respectively. There are genetic contributions to intelligence and education with near-complete overlap between common additive SNP effects on these traits (genetic correlation ~ 1). Genetic influences on socioeconomic status are also associated with the genetic foundations of intelligence. The results are also compatible with substantial environmental contributions to socioeconomic status

    Aneuploidy and prognosis of non-small-cell lung cancer: a meta-analysis of published data

    Get PDF
    In lung cancer, DNA content abnormalities have been described as a heterogeneous spectrum of impaired tumour cell DNA histogram patterns. They are merged into the common term of aneuploidy and probably reflect a high genotypic instability. In non-small-cell lung cancer, the negative effect of aneuploidy has been a subject of controversy inasmuch as studies aimed at determining the survival–DNA content relationship have reported conflicting results. We made a meta-analysis of published studies aimed at determining the prognostic effect of aneuploidy in surgically resected non-small-cell lung cancer. 35 trials have been identified in the literature. A comprehensive collection of data has been constructed taking into account the following parameters: quality of specimen, DNA content assessment method, aneuploidy definition, histology and stage grouping, quality of surgical resection and demographic characteristics of the analysed population. Among the 4033 assessable patients, 2626 suffered from non-small-cell lung cancer with aneuploid DNA content (overall frequency of aneuploidy: 0.65; 95% CI: (0.64–0.67)). The DerSimonian and Laird method was used to estimate the size effects and the Peto and Yusuf method was used in order to generate the odds ratios (OR) of reduction in risk of death for patients affected by a nearly diploid (non-aneuploid) non-small-cell lung cancer. Survivals following surgical resection, from 1 to 5 years, were chosen as the end-points of our meta-analysis. Patients suffering from a nearly diploid tumour benefited from a significant reduction in risk of death at 1, 2, 3 and 4 years with respective OR: 0.51, 0.51, 0.45 and 0.67 (P< 10−4for each end-point). 5 years after resection, the reduction of death was of lesser magnitude: OR: 0.87 (P = 0.08). The test for overall statistical heterogeneity was conventionally significant (P< 0.01) for all 5 end-points, however. None of the recorded characteristics of the studies could explain this phenomenon precluding a subset analysis. Therefore, the DerSimonian and Laird method was applied inasmuch as this method allows a correction for heterogeneity. This method demonstrated an increase in survival at 1, 2, 3, 4 and 5 years for patients with diploid tumours with respective size effects of 0.11, 0.15, 0.20, 0.20 and 0.21 (value taking into account the correction for heterogeneity;P< 10−4for each end-point). Patients who benefit from a surgical resection for non-small-cell lung cancer with aneuploid DNA content prove to have a higher risk of death. This negative prognostic factor decreases the probability of survival by 11% at one year, a negative effect deteriorating up to 21% at 5 years following surgery. © 2001 Cancer Research Campaign http://www.bjcancer.co
    corecore