3,527 research outputs found

    Quantum Entanglement in Nanocavity Arrays

    Get PDF
    We show theoretically how quantum interference between linearly coupled modes with weak local nonlinearity allows the generation of continuous variable entanglement. By solving the quantum master equation for the density matrix, we show how the entanglement survives realistic levels of pure dephasing. The generation mechanism forms a new paradigm for entanglement generation in arrays of coupled quantum modes.Comment: 5 pages, 3 figure

    Artificial Life in an Exciton-Polariton Lattice

    Full text link
    We show theoretically that a lattice of exciton-polaritons can behave as a life-like cellular automaton when simultaneously excited by a continuous wave coherent field and a time-periodic sequence of non-resonant pulses. This provides a mechanism of realizing a range of highly sought spatiotemporal structures under the same conditions, including: discrete solitons, oscillating solitons, rotating solitons, breathers, soliton trains, guns, and choatic behaviour. These structures can survive in the system indefinitely, despite the presence of dissipation, and allow universal computation.Comment: 14 pages, 14 figure

    Exciton-Polariton Quantum Gates Based on Continuous Variables

    Full text link
    We propose a continuous variable analog of quantum controlled-NOT gates based on a system of exciton-polaritons in semiconductor microcavities. This can be realized by the engineering of parametric interaction between control and target polariton modes, which can be varied in time. As an explicit setup we use a system of dipolaritons, which allows for enhancement of parametric interaction by auxiliary classical fields and scalable multigate system realization. The calculated fidelity is shown to exceed 99% for realistic system parameters.Comment: 6 pages, 3 figures + 6 pages, 2 figures supplemental materia

    Spontaneous and Superfluid Chiral Edge States in Exciton-Polariton Condensates

    Full text link
    We present a scheme of interaction-induced topological bandstructures based on the spin anisotropy of exciton-polaritons in semiconductor microcavities. We predict theoretically that this scheme allows the engineering of topological gaps, without requiring a magnetic field or strong spin-orbit interaction (transverse electric-transverse magnetic splitting). Under non-resonant pumping, we find that an initially topologically trivial system undergoes a topological transition upon the spontaneous breaking of phase symmetry associated with polariton condensation. Under resonant coherent pumping, we find that it is also possible to engineer a topological dispersion that is linear in wavevector -- a property associated with polariton superfluidity.Comment: 6 pages, 4 figure

    Optically erasing disorder in semiconductor microcavities with dynamic nuclear polarization

    Full text link
    The mean squared value of the photonic disorder is found to be reduced by a factor of 100 in a typical GaAs based microcavity, when exposed to a circularly polarized continuous wave optical pump without any special spatial patterning. Resonant excitation of the cavity mode excites a spatially non-uniform distribution of spin-polarized electrons, which depends on the photonic disorder profile. Electrons transfer spin to nuclei via the hyperfine contact interaction, inducing a long-living Overhauser magnetic field able to modify the potential of exciton-polaritons.Comment: 4 pages, 3 figure

    Quantum Exciton-Polariton Networks through Inverse Four-Wave Mixing

    Get PDF
    We demonstrate the potential of quantum operation using lattices of exciton-polaritons in patterned semiconductor microcavities. By introducing an inverse four-wave mixing scheme acting on localized modes, we show that it is possible to develop non-classical correlations between individual condensates. This allows a concept of quantum exciton-polariton networks, characterized by the appearance of multimode entanglement even in the presence of realistic levels of dissipation.Comment: 5 pages, 4 figures, pre-review version of manuscrip

    Optically induced transparency in bosonic cascade lasers

    Full text link
    Bosonic cascade lasers are terahertz (THz) lasers based on stimulated radiative transitions between bosonic condensates of excitons or exciton-polaritons confined in a trap. We study the interaction of an incoming THz pulse resonant in frequency with the transitions between neighboring energy levels of the cascade. We show that at certain optical pump conditions the cascade becomes transparent to the incident pulse: it neither absorbs nor amplifies it, in the mean field approximation. The populations of intermediate levels of the bosonic cascade change as the THz pulse passes, nevertheless. In comparison, a fermionic cascade laser does not reveal any of these properties.Comment: 4 pages, 5 figure

    Terahertz cascades from nanoparticles

    Full text link
    In this article we propose a system capable of THz radiation with quantum yield above unity. The system consists of nanoparticles where the material composition varies along the radial direction of each nanoparticle in such a way that a ladder of equidistant energy levels emerges. By then exciting the highest level of this ladder we produce multiple photons of the same frequency in the THz range. We demonstrate how we can calculate a continuous material composition profile that achieves a high quantum yield and then show that a more experimentally friendly design of a multishell nanoparticle can still result in a high quantum yield.Comment: 5 pages, 4 figure

    All-to-all connected networks by multi-frequency excitation of polaritons

    Full text link
    We analyze theoretically a network of all-to-all coupled polariton modes, realized by a trapped polariton condensate excited by a comb of different frequencies. In the low-density regime the system dynamically finds a state with maximal gain defined by the average intensities (weights) of the excitation beams, analogous to active mode locking in lasers, and thus solves a maximum eigenvalue problem set by the matrix of weights. The method opens the possibility to tailor a superposition of populated bosonic modes in the trapped condensate by appropriate choice of drive
    • …
    corecore