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Quantum entanglement in nanocavity arrays
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We show theoretically how quantum interference between linearly coupled modes with weak local nonlinearity
allows the generation of continuous variable entanglement. By solving the quantum master equation for the density
matrix, we show how the entanglement survives realistic levels of pure dephasing. The generation mechanism
forms a paradigm for entanglement generation in arrays of coupled quantum modes.
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Entanglement is a key concept in quantum physics and
is a crucial resource for quantum information science, par-
ticularly within recent schemes based on initial multipartite
entangled states [1,2]. The generation of entangled states of
two or more quantum modes typically relies on paramet-
ric down-conversion in nonlinear crystals [3–6] or optical
frequency combs [7]. Schemes working at the microscopic
scale [8–11]—suitable for integrated devices—are instead
always based on the cascaded biexciton-exciton radiative
decay in semiconductor nanostructures, and thus restricted to
bipartite entanglement.

In systems of weakly nonlinear coupled quantum modes,
the interaction energy associated with two quanta is smaller
than the broadening introduced by the finite lifetime of the
mode. The opposite situation has recently been the object of
theoretical investigation, because of the possibility of engi-
neering strongly correlated many-particle states, and numerous
applications ranging from the photon blockade effect [12–14]
to the perspective of a quantum simulator [15–18]. The
requirements for a practical realization of such a strong
nonlinearity within a solid state technology are however
very stringent, and perhaps the only clear-cut observation of
the photon blockade has been reported in a state-of-the-art
atomic system [13]. We have recently suggested that photons
with strongly sub-Poissonian statistics can be emitted by a
set of coupled modes in the weakly nonlinear regime [19],
thanks to the interplay of the weak nonlinearity and quantum
interference [20]. We argue that the same mechanism can
be more generally applied to the generation of a variety of
nonclassical states of many photons—in particular multipartite
entangled states.

Here, we propose a paradigm of entanglement gener-
ation which can be implemented in a range of compact
solid-state systems including coupled micropillars [21], cou-
pled mesas [22,23], and coupled photonic crystal cavities
[15–18,24–26]. By accurate theoretical modeling of the open
quantum system, we show that continuous variable bipartite
entanglement can be generated by an array of three weakly
nonlinear spatially confined modes, linearly coupled via
quantum tunneling. The scheme, illustrated in Fig. 1(a),
relies on the quantum interference between distinct excitation
pathways influenced by the sensitivity to small nonlinear shifts
of the mode energies [20].

This has the advantage of producing degenerate spa-
tially separated modes, suitable for homodyne detection.
We demonstrate entanglement by testing the violation of
inequalities [28,29] for separable states, and provide an

intuitive interpretation of how the scheme works. Our system is
able to reproduce the situation of mode squeezing coupled with
beamsplitters [30] in a compact microscopic system holding
promise for an integrated device. The generation mechanism
can easily be extended to larger arrays of modes, from which
multipartite entanglement is expected.

A general system of three linearly coupled quantum boxes
is characterized by the following: energies En(n = 1,2,3);
photon lifetime h̄/�, that we assume equal for the three modes;
tunneling rate J ; and nonlinear energy constant U . A near-
resonant monochromatic pump drives mode 2. We assume that
the system lies in the weak nonlinear regime characterised
by U < � and U < J [12–14]. Note that excellent control
over system geometry, energy detuning, and coupling strength
has been recently achieved experimentally in the case of
semiconductor micropillars [21]. For near-resonant excitation,
higher energy modes can be neglected such that each box is
described by a single mode. Under these assumptions, the
system is described by the Kerr-Hubbard Hamiltonian [15]:

Ĥ =
∑

n

(Enâ
†
nân + Uâ†

nâ
†
nânân)

+ J (â†
1â2 + â

†
2â1 + â

†
2â3 + â

†
3â2) + F (â†

2 + â2), (1)

where an are the Bose annihilation operators of the three modes
and F is the optical pump amplitude. This Hamiltonian is
written directly in the rotating frame of the pump field, so
that F is a constant in time and the energies En are expressed
relative to the optical pump energy h̄ω0. Terms proportional
to U describe a Kerr-type nonlinearity. These terms are well
suited to model the Kerr nonlinearity induced by the material
(that might be enhanced by strong optical confinement) but
also a resonant nonlinearity due to exciton-exciton interaction
as, e.g., in a confined polariton [14] system. The quantum
optical behavior of our system is fully described using the
master equation for the density matrix ρ:
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nρ − ρn̂2
n

)
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Two Lindblad type terms account for dissipation at a rate � and
pure dephasing at a rate �P , respectively. The dissipation is
caused by the leakage of photons out of the system, while
pure dephasing is the result of the coupling to a thermal
bath [31]. The latter could be due to exciton-phonon scattering
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FIG. 1. (Color online) (a) Illustration of three coupled confined
optically active modes, with optical pumping of the central mode.
(b) Variation of the entanglement parameter S13 with the pump
amplitude for different pure dephasing rates, �P (marked on the
plot). When the value of S13 is less than unity, an entangled state of
modes â1 and â3 is present. The dashed curve shows the value of S12

evaluated between modes â1 and â2. (c) Corresponding dependence
of the average occupation of modes 1 and 3 (solid curves) and of
mode 2 (dashed curves). (d) Variation of S13 with a nonzero detuning
between E1 and E3. We chose E1 + E3 = −0.06 meV [E1 = E3 in
(b) and (c)], E2 = 0.08 meV. The slight detuning between the modes
E1,3 and E2 was found to give the smallest value of S13 for fixed J

and � by semianalytic and numerical optimization (see Supplemental
Material [27]). Note that J is the largest energy scale in the system,
such that although the cavities are weakly nonlinear they are strongly
coupled.

in the case of a semiconductor structure. Equation (2) can be
solved numerically for the steady state density matrix using a
truncated number state basis [14] (see Supplemental Material
for details [27]).

Our aim is to evidence continuous variable entangle-
ment [30] between the modes in the first and third quantum
boxes. In analogy to Bell’s result for discrete variable entan-
glement, continuous variable entanglement is characterized by
the violation of an inequality [28,29]:

1 � S13 = V (p̂1 − p̂3) + V (q̂1 + q̂3), (3)

where we have defined the amplitude and phase operators,
p̂n = (ân + â

†
n)/2 and q̂n = (ân − â

†
n)/(2i), respectively. The

variance of an operator, V (Ô) = 〈Ô2〉 − 〈Ô〉2, can be ex-
tracted theoretically from the density matrix and experimen-
tally measured via homodyne detection.

For our calculations, we use parameters corresponding
to exciton-polariton boxes [14] although we note that the
conclusions of our work also apply to several other phys-
ical implementations. It is well known how to calculate
the nonlinear interaction strength [14] and we take the
value U = 0.012 meV in agreement with experimental

measurements [32–34]. A range of coupling strengths are
possible by varying the separation of the polariton boxes
and we choose a coupling strength J = 0.5 meV, which
is in agreement with previous theoretical calculations [19]
and recent experimental measurements [21]. The decay rate
� = 0.044 meV was reported in Ref. [35].

Figure 1(b) shows the dependence of the parameter S13

on the pump amplitude for a range of values of the pure
dephasing rate �P . For �P = 0, the black curve shows that
there is a clear violation of inequality (3), corresponding to
an entanglement of the modes in the first and third quantum
boxes. In contrast, the modes â1 and â2 (or symmetrically â2

and â3) are not entangled, as evidenced by the dashed curve
showing the value of S12, evaluated from Eq. (3) by replacing
â3 with â2. While the quantity S13 is capable of witnessing
entanglement and useful given its experimental accessibility,
it is important to note that it does not fulfill the requirements
of a direct measure of the amount of entanglement [36]. In
fact, there is no unique, universally accepted, measure of the
entanglement for our system.

For increasing dephasing rate, the amount of violation
decreases and the entanglement is lost at high dephasing rate.
Dephasing rates in semiconductor microcavities have been
calculated [37] and measured [38] in the range of tenths of μeV.
Even for a hypothetical dephasing rate an order of magnitude
stronger, we still find that the predicted violation is sufficient
for experimental detection.

Figure 1(c) shows the corresponding average populations
of the modes in the signal quantum boxes (solid curves) and
central box (dashed curves). For small pump amplitudes,
corresponding to the linear regime, the populations grow
according to a power law as expected. Since J is large, the
largest occupations are those of modes â1 and â3, even though
only mode â2 is driven. This trend is best understood by
expressing the ân operators in terms of eigenmodes of the
coupling J . Then, similarly to the two-mode system [19],
these eigenmodes are driven by the pump in a way that
results in destructive interference for the occupation of mode
â2. Figure 1(d) shows the variation of S13 as a function
of a finite detuning between the mode energies E1 and
E3. The strong resonance at zero detuning is an indication
of the underlying quantum interference mechanism. The
level of control, required to fabricate a device with such a
range of detuning to minimize the entanglement parameter
S13, is achievable in state-of-the-art arrays of semiconductor
micropillars [21].

We stress that the reported results are also of significance
in several other systems. Since the Jaynes-Cummings model
can be linked to an effective Kerr nonlinearity [39], Eq. (1)
is also applicable to quantum dots embedded in nanocavities
and circuit QED systems [40], where the value of U is related
to the cooperativity parameter. In addition, the value of U has
been recently evaluated in passive nanocavities [41], which
represent a particularly promising system given the low decay
and dephasing rates. Values of J and �P suitable for the
present proposal have also been measured for photonic crystal
nanostructures. As an example, the coupling of nanocavities
has been recently studied in Ref. [42] and an upper bound
to dephasing rates in quantum dots of 1 μeV has been
experimentally established [43].
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FIG. 2. (Color online) Energy level diagram of the first ten photon
number (Fock) states. The states are labeled by the number of photons
in each of the three modes. The transitions between modes caused
by optical pumping and quantum tunneling are illustrated by the red
(dark gray) and green (light gray) arrows, respectively. The nonlinear
shift of states containing two particles can be seen by their difference
with the energy levels calculated in the limit U = 0, which are shown
in grey.

In order to better understand the origin and the nature of the
observed entanglement, we carry out an approximate analysis
by expanding the quantum state on a truncated set of photon
number states and solving the time-dependent Schrödinger
equation for this state. This approach does not include the
effect of (Lindblad type) dissipation and pure dephasing,
and is expected to give an upper bound to the violation of
inequality (3). The expansion reads

|ψ〉 =
∑

n1,n2,n3

Cn1n2n3 |n1n2n3〉, (4)

where the basis vectors

|n1n2n3〉 = â
†n1
1 â

†n2
2 â

†n3
3 |000〉/

√
n1!n2!n3! (5)

represent states with n1, n2, and n3 particles in modes 1, 2,
and 3, respectively. For the analysis, expansion (4) has to be
truncated to a maximum occupation, N = ∑

ni . The first ten
states, used in expansion (4), are depicted schematically in
Fig. 2, together with their couplings caused by the pump and
tunneling terms in the Hamiltonian.

The states containing two quanta in the same mode
experience slight energy shifts by an amount 2U above the
bare energy levels (shown in gray) due to the local nonlinear
interactions.

The Schrödinger equation, ih̄d|ψ〉/dt = Ĥ|ψ〉, can be
solved iteratively under the assumption of small occupations
(see the supplemental material for more details) for the steady
state (including the effect of particle loss). The coefficients
Cn1n2n3 are then calculated and shown in Fig. 3 for the cases
with (U �= 0 with green/light gray bars) and without (U = 0
with red/dark gray bars) nonlinearity.

In accordance with Fig. 1(c), we observe that the quantum
state is in general characterized by very low occupancy
of mode 2. Each photon that is initially injected in this
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FIG. 3. (Color online) Quantum state of the system expanded
onto the particle number states. The values of |Cn1n2n3 |2 are plotted
in the linear (red/dark gray bars) and nonlinear (green/light gray
bars) regimes. Note that not all the basis states are shown, since
due to symmetry |Cn1n2n3 |2 = |Cn3n2n1 |2. The states with n2 = 0 have
the highest occupations and their relative occupations are exactly
given by the binomial coefficients in the linear case (dashed lines
and black points). The parameters were the same as in Fig. 1(b) with
F = 0.8 meV and � = 0.044 meV.

mode, tunnels to modes 1 and 3. This behavior can be
easily understood in the linear case (U = 0), for which the
Hamiltonian can be diagonalized exactly. In this case, the
Schrödinger equation shows that only the mode generated by
the operator (â1 + â3)† is effectively driven by the pump, thus
giving rise to a fully separable quantum state, expressed as
a linear combination of states (â1 + â3)†N |000〉 at varying
occupancy N . Consequently, the relative weights of the
coefficients Cn1n2n3 , for each given value of the total occupancy
N , are exactly given by binomial coefficients, as shown by the
dashed lines in Fig. 3. In the nonlinear regime, the system
changes to a state characterized by the green (light gray) bars
in Fig. 3, where it is clear that states containing particles in
both modes 1 and 3 (e.g., |101〉) are suppressed with respect
to the linear case, while those with all particles in the same
mode are enhanced (e.g., |200〉). This result is a consequence
of the nonlinear shift when photons occupy the same box,
which has an effect on the quantum interference of possible
time evolution paths in the Fock basis. As an example, within
the manifold of states with N = 2 occupancy, the couplings
of the states |110〉 and |011〉 to the states |200〉 and |002〉,
respectively, change the phase of any time-evolution path
passing through those states. If we consider the system initially
in the state |011〉 for example, then to reach the state |101〉
two possible options are clear from Fig. 2: the direct path
|011〉 �→ |101〉 or the path |011〉 �→ |020〉 �→ |110〉 �→ |101〉.
The relative quantum phase of the two paths is affected by
coupling to the state |200〉, which in the presence of the small
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nonlinear shift of this state induces a destructive interference
of the two paths and suppression of the state |101〉. We are
left with a situation where the detection of at least one photon
in either signal mode, 1 or 3, grants that no photon will be
detected in the other mode. This result solely depends on
the nonlinearity in modes 1 and 3. We have verified that
the parameter S13 experiences negligible change when the
nonlinearity in mode 2 is removed.

In summary, arrays of coupled photonic modes are able
to display striking quantum correlations despite their modest
nonlinearity in the low occupation limit. This allows continu-
ous variable entanglement to be generated between degenerate

spatially separated modes that are coupled via quantum
tunneling, in a way that is robust to typical decoherence rates in
these systems. The set of three coupled modes here described
serves as a building block that can be repeated on an array
of modes with appropriate topology, which could be further
controlled using electric or magnetic fields [44]. This sets a
viable paradigm for the generation of multiparty entanglement
in arrays of quantum boxes on a single device.

Our work was supported by NCCR Quantum Photonics
(NCCR QP), a research instrument of the Swiss National
Science Foundation (SNSF).
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