430 research outputs found

    Preparation and Characterization of Monolayers and Multilayers of Preformed Polymers

    Get PDF
    In an attempt to study which factors determine the transferability of monolayers of preformed polymers from the air-water interface onto substrates we investigated flexible polymers (poly(octadecylmethacrylates) (PODMAs)) and α-helical polymers (polyglutamates). Pressure-area isotherms show the formation of a liquid-analogous state which depends on temperature and side chain "impurity". Y-mode Langmuir-Blodgett multilayers of these polymers can be formed with a constant transfer ratio under conditions at which a more or less liquid-analogous state exists. Polarized IR spectra suggest that the polyglutamate α helices in the multilayer are oriented with the main axis parallel to the transfer direction and that carbon side chains are practically randomly oriented around the α-helical cylinder. In PODMA multilayers the side chains are perpendicular to the film. In both cases the side chains seem to interdigitate

    Construction of an optical test-bed for eLISA

    Get PDF
    In the planned eLISA mission a key part of the system is the optical bench that holds the interferometers for reading out the inter-spacecraft distance and the test mass position. We report on ongoing technology development for the eLISA optical system like the back-link between the optical benches and the science interferometer where the local beam is interfered with the received beam from the distant spacecraft. The focus will be on a setup to investigate the tilt-to-pathlength coupling in the science interferometer. To test the science interferometer in the lab a second bench providing a laser beam and a reference interferometer is needed. We present a setup with two ultra-stable low expansion glass benches and bonded optics. To suppress the tilt-to-pathlength coupling to the required level (few μm/rad) imaging optics are placed in front of the interferometer photo diodes

    LiCaFeF6 A zero strain cathode material for use in Li ion batteries

    Get PDF
    A new zero strain LiCaFeF6 cathode material for reversible insertion and extraction of lithium ions is presented. LiCaFeF6 is synthesized by a solid state reaction and processed to a conductive electrode composite via high energy ball milling. In the first cycle, a discharge capacity of 112 mAh g amp; 8315; is achieved in the voltage range from 2.0 V to 4.5 V. The electrochemically active redox couple is Fe3 amp; 8314; Fe2 amp; 8314; as confirmed by Mössbauer spectroscopy and X ray absorption spectroscopy. The compound has a trigonal colquiriite type crystal structure space group . By means of in situ and ex situ XRD as well as X ray absorption fine structure spectroscopy a reversible response to Li uptake release is found. For an uptake of 0.8 mol Li per formula unit only minimal changes occur in the lattice parameters causing a total change in unit cell volume of less than 0.5 . The spatial distribution of cations in the crystal structure as well as the linkage between their corresponding fluorine octahedra is responsible for this very small structural response. With its zero strain behaviour this material is expected to exhibit only negligible mechanical degradation. It may be used as a cathode material in future lithium ion batteries with strongly improved safety and cycle lif

    Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling

    Get PDF
    The laser interferometer space antenna (LISA) is a future space-based interferometric gravitational-wave detector consisting of three spacecraft in a triangular configuration. The interferometric measurements of path length changes between satellites will be performed on optical benches in the satellites. Angular misalignments of the interfering beams couple into the length measurement and represent a significant noise source. Imaging systems will be used to reduce this tilt-to-length coupling. We designed and constructed an optical test bed to experimentally investigate tilt-to-length coupling. It consists of two separate structures, a minimal optical bench and a telescope simulator. The minimal optical bench comprises the science interferometer where the local laser is interfered with light from a remote spacecraft. In our experiment, a simulated version of this received beam is generated on the telescope simulator. The telescope simulator provides a tilting beam, a reference interferometer and an additional static beam as a phase reference. The tilting beam can either be a flat-top beam or a Gaussian beam. We avoid tilt-to-length coupling in the reference interferometer by using a small photo diode placed at an image of the beam rotation point. We show that the test bed is operational with an initial measurement of tilt-to-length coupling without imaging systems. Furthermore, we show the design of two different imaging systems whose performance will be investigated in future experiments
    • …
    corecore