90 research outputs found

    Is routine karyotyping required in prenatal samples with a molecular or metabolic referral?

    Get PDF
    As a routine, karyotyping of invasive prenatal samples is performed as an adjunct to referrals for DNA mutation detection and metabolic testing. We performed a retrospective study on 500 samples to assess the diagnostic value of this procedure. These samples included 454 (90.8%) chorionic villus (CV) and 46 (9.2%) amniocenteses specimens. For CV samples karyotyping was based on analyses of both short-term culture (STC) and long-term culture (LTC) cells. Overall, 19 (3.8%) abnormal karyotypes were denoted: four with a common aneuploidy (trisomy 21, 18 and 13), two with a sex chromosomal aneuploidy (Klinefelter syndrome), one with a sex chromosome mosaicism and twelve with various autosome mosaicisms. In four cases a second invasive test was performed because of an abnormal finding in the STC. Taken together, we conclude that STC and LTC karyotyping has resulted in a diagnostic yield of 19 (3.8%) abnormal cases, including 12 cases (2.4%) with an uncertain significance. From a diagnostic point of view, it is desirable to limit uncertain test results as secondary test findings. Therefore, we recommend a more targeted assay, such as e.g. QF-PCR, as a replacement of the STC and to provide parents the autonomy to choose between karyotyping and QF-PCR

    The Results of CHD7 Analysis in Clinically Well-Characterized Patients with Kallmann Syndrome

    Get PDF
    Item does not contain fulltextCONTEXT: Kallmann syndrome (KS) and CHARGE syndrome are rare heritable disorders in which anosmia and hypogonadotropic hypogonadism co-occur. KS is genetically heterogeneous, and there are at least eight genes involved in its pathogenesis, whereas CHARGE syndrome is caused by autosomal dominant mutations in only one gene, the CHD7 gene. Two independent studies showed that CHD7 mutations can also be found in a minority of KS patients. OBJECTIVE: We aimed to investigate whether CHD7 mutations can give rise to isolated KS or whether additional features of CHARGE syndrome always occur. DESIGN: We performed CHD7 analysis in a cohort of 36 clinically well-characterized Dutch patients with KS but without mutations in KAL1 and with known status for the KS genes with incomplete penetrance, FGFR1, PROK2, PROKR2, and FGF8. RESULTS: We identified three heterozygous CHD7 mutations. The CHD7-positive patients were carefully reexamined and were all found to have additional features of CHARGE syndrome. CONCLUSION: The yield of CHD7 analysis in patients with isolated KS seems very low but increases when additional CHARGE features are present. Therefore, we recommend performing CHD7 analysis in KS patients who have at least two additional CHARGE features or semicircular canal anomalies. Identifying a CHD7 mutation has important clinical implications for the surveillance and genetic counseling of patients

    TRPC6 single nucleotide polymorphisms and progression of idiopathic membranous nephropathy

    Get PDF
    Background: Activating mutations in the Transient Receptor Potential channel C6 (TRPC6) cause autosomal dominant focal segmental glomerular sclerosis (FSGS). TRPC6 expression is upregulated in renal biopsies of patients with idiopathic membranous glomerulopathy (iMN) and animal models thereof. In iMN, disease progression is characterized by glomerulosclerosis. In addition, a context-dependent TRPC6 overexpression was recently suggested in complement-mediated podocyte injury in e.g. iMN. Hence, we hypothesized that genetic variants in TRPC6 might affect susceptibility to development or progression of iMN. Methods & Results: Genomic DNA was isolated from blood samples of 101 iMN patients and 292 controls. By direct sequencing of the entire TRPC6 gene, 13 single nucleotide polymorphisms (SNPs) were identified in the iMN cohort, two of which were causing an amino acid substitution (rs3802829; Pro15Ser and rs36111323, Ala404Val). No statistically significant differences in genotypes or allele frequencies between patients and controls were observed. Clinical outcome in patients was determined (remission n = 26, renal failure n = 46, persistent proteinuria n = 29, follow-up median 80 months {range 51-166}). The 13 identified SNPs showed no association with remission or renal failure. There were no differences in genotypes or allele frequencies between patients in remission and progressors. Conclusions: Our data suggest that TRPC6 polymorphisms do not affect susceptibility to iMN, or clinical outcome in iMN

    Novel GAA Variants and Mosaicism in Pompe Disease Identified by Extended Analyses of Patients with an Incomplete DNA Diagnosis

    Get PDF
    Pompe disease is a metabolic disorder caused by a deficiency of the glycogen-hydrolyzing lysosomal enzyme acid a-glucosidase (GAA), which leads to progressive muscle wasting. This autosomal-recessive disorder is the result of disease-associated variants located in the GAA gene. In the present study, we performed extended molecular diagnostic analysis to identify novel disease-associated variants in six suspected Pompe patients from four different families for which conventional diagnostic assays were insufficient. Additional assays, such as a generic-splicing assay, minigene analysis, SNP array analysis, and targeted Sanger sequencing, allowed the identification of an exonic deletion, a promoter deletion, and a novel splicing variant located in the 5' UTR. Furthermore, we describe the diagnostic process for an infantile patient with an atypical phenotype, consisting of left ventricular hypertrophy but no signs of muscle weakness or motor problems. This led to the identification of a genetic mosaicism for a very severe GAA variant caused by a segmental uniparental isodisomy (UPD). With this study, we aim to emphasize the need for additional analyses to detect new disease-associated GAA variants and non-Mendelian genotypes in Pompe disease where conventional DNA diagnostic assays are insufficient

    Novel GAA Variants and Mosaicism in Pompe Disease Identified by Extended Analyses of Patients with an Incomplete DNA Diagnosis

    Get PDF
    Pompe disease is a metabolic disorder caused by a deficiency of the glycogen-hydrolyzing lysosomal enzyme acid α-glucosidase (GAA), which leads to progressive muscle wasting. This autosomal-recessive disorder is the result of disease-associated variants located in the GAA gene. In the present study, we performed extended molecular diagnostic analysis to identify novel disease-associated variants in six suspected Pompe patients from four different families for which conventional diagnostic assays were insufficient. Additional assays, such as a generic-splicing assay, minigene analysis, SNP array analysis, and targeted Sanger sequencing, allowed the identification of an exonic deletion, a promoter deletion, and a novel splicing variant located in the 5′ UTR. Furthermore, we describe the diagnostic process for an infantile patient with an atypical phenotype, consisting of left ventricular hypertrophy but no signs of muscle weakness or motor problems. This led to the identification of a genetic mosaicism for a very severe GAA variant caused by a segmental uniparental isodisomy (UPD). With this study, we aim to emphasize the need for additional analyses to detect new disease-associated GAA variants and non-Mendelian genotypes in Pompe disease where conventional DNA diagnostic assays are insufficient

    Segmental and total uniparental isodisomy (UPiD) as a disease mechanism in autosomal recessive lysosomal disorders : evidence from SNP arrays

    Get PDF
    Analyses in our diagnostic DNA laboratory include genes involved in autosomal recessive (AR) lysosomal storage disorders such as glycogenosis type II (Pompe disease) and mucopolysaccharidosis type I (MPSI, Hurler disease). We encountered 4 cases with apparent homozygosity for a disease-causing sequence variant that could be traced to one parent only. In addition, in a young child with cardiomyopathy, in the absence of other symptoms, a diagnosis of Pompe disease was considered. Remarkably, he presented with different enzymatic and genotypic features between leukocytes and skin fibroblasts. All cases were examined with microsatellite markers and SNP genotyping arrays. We identified one case of total uniparental disomy (UPD) of chromosome 17 leading to Pompe disease and three cases of segmental uniparental isodisomy (UPiD) causing Hurler-(4p) or Pompe disease (17q). One Pompe patient with unusual combinations of features was shown to have a mosaic segmental UPiD of chromosome 17q. The chromosome 17 UPD cases amount to 11% of our diagnostic cohort of homozygous Pompe patients (plus one case of pseudoheterozygosity) where segregation analysis was possible. We conclude that inclusion of parental DNA is mandatory for reliable DNA diagnostics. Mild or unusual phenotypes of AR diseases should alert physicians to the possibility of mosaic segmental UPiD. SNP genotyping arrays are used in diagnostic workup of patients with developmental delay. Our results show that even small Regions of Homozygosity that include telomeric areas are worth reporting, regardless of the imprinting status of the chromosome, as they might indicate segmental UPiD.Peer reviewe

    Diagnostic exome sequencing in 266 Dutch patients with visual impairment

    Get PDF
    Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective
    corecore