79 research outputs found

    Multi-electron transitions induced by neutron impact on helium

    Full text link
    We explore excitation and ionization by neutron impact as a novel tool for the investigation of electron-electron correlations in helium. We present single and double ionization spectra calculated in accurate numerical ab-initio simulations for incoming neutrons with kinetic energies of up to 150 keV. The resulting electron spectra are found to be fundamentally different from photoioniza- tion or charged particle impact due to the intrinsic many-body character of the interaction. In particular, doubly excited resonances that are strongly suppressed in electron or photon impact become prominent. The ratio of double to single ionization is found to differ significantly from those of photon and charged particle impact.Comment: 5 pages, 5 figure

    Photoionization of helium by attosecond pulses: extraction of spectra from correlated wave functions

    Full text link
    We investigate the photoionization spectrum of helium by attosecond XUV pulses both in the spectral region of doubly excited resonances as well as above the double ionization threshold. In order to probe for convergence, we compare three techniques to extract photoelectron spectra from the wavepacket resulting from the integration of the time-dependent Schroedinger equation in a finite-element discrete variable representation basis. These techniques are: projection on products of hydrogenic bound and continuum states, projection onto multi-channel scattering states computed in a B-spline close-coupling basis, and a technique based on exterior complex scaling (ECS) implemented in the same basis used for the time propagation. These methods allow to monitor the population of continuum states in wavepackets created with ultrashort pulses in different regimes. Applications include photo cross sections and anisotropy parameters in the spectral region of doubly excited resonances, time-resolved photoexcitation of autoionizing resonances in an attosecond pump-probe setting, and the energy and angular distribution of correlated wavepackets for two-photon double ionization.Comment: 19 pages, 12 figure

    Pump-induced Exceptional Points in Lasers

    Full text link
    We demonstrate that the above-threshold behavior of a laser can be strongly affected by exceptional points which are induced by pumping the laser nonuniformly. At these singularities, the eigenstates of the non-Hermitian operator which describes the lasing modes coalesce. In their vicinity, the laser may turn off even when the overall pump power deposited in the system is increased. Such signatures of a pump- induced exceptional point can be experimentally probed with coupled ridge or microdisk lasers.Comment: 4.5 pages, 4 figures, final version including additional FDTD dat

    Scalable numerical approach for the steady-state ab initio laser theory

    Get PDF
    We present an efficient and flexible method for solving the non-linear lasing equations of the steady-state ab initio laser theory. Our strategy is to solve the underlying system of partial differential equations directly, without the need of setting up a parametrized basis of constant flux states. We validate this approach in one-dimensional as well as in cylindrical systems, and demonstrate its scalability to full-vector three-dimensional calculations in photonic-crystal slabs. Our method paves the way for efficient and accurate simulations of lasing structures which were previously inaccessible.Comment: 17 pages, 8 figure

    Symmetry, stability, and computation of degenerate lasing modes

    Get PDF
    We present a general method to obtain the stable lasing solutions for the steady-state ab initio lasing theory (SALT) for the case of a degenerate symmetric laser in two dimensions (2D). We find that under most regimes (with one pathological exception), the stable solutions are clockwise and counterclockwise circulating modes, generalizing previously known results of ring lasers to all 2D rotational symmetry groups. Our method uses a combination of semianalytical solutions close to lasing threshold and numerical solvers to track the lasing modes far above threshold. Near threshold, we find closed-form expressions for both circulating modes and other types of lasing solutions as well as for their linearized Maxwell-Bloch eigenvalues, providing a simple way to determine their stability without having to do a full nonlinear numerical calculation. Above threshold, we show that a key feature of the circulating mode is its “chiral” intensity pattern, which arises from spontaneous symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even when nonlinear effects become important. Finally, we introduce a numerical technique to solve the degenerate SALT equations far above threshold even when spatial discretization artificially breaks the degeneracy.United States. Army Research Office. Institute for Soldier Nanotechnologies (Grant W911NF-07-D-0004)Austrian Science Fund (Project SFB NextLite F49-P10)United States. Air Force Research Laboratory (Agreement FA8650-15-2-5220
    • …
    corecore