13 research outputs found
Evaluation of Helium Ion Radiotherapy in Combination with Gemcitabine in Pancreatic Cancer In Vitro
Background: Pancreatic cancer is one of the most aggressive and lethal cancers. New treatment strategies are highly warranted. Particle radiotherapy could offer a way to overcome the radioresistant nature of pancreatic cancer because of its biological and physical characteristics. Within particles, helium ions represent an attractive therapy option to achieve the highest possible conformity while at the same time protecting the surrounding normal tissue. The aim of this study was to evaluate the cytotoxic efficacy of helium ion irradiation in pancreatic cancer in vitro. Methods: Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and helium ions at various doses and treated with gemcitabine. Photon irradiation was performed with a biological cabin X-ray irradiator, and helium ion irradiation was performed with a spread-out Bragg peak using the raster scanning technique at the Heidelberg Ion Beam Therapy Center (HIT). The cytotoxic effect on pancreatic cancer cells was measured with clonogenic survival. The survival curves were compared to the predicted curves that were calculated via the modified microdosimetric kinetic model (mMKM). Results: The experimental relative biological effectiveness (RBE) of helium ion irradiation ranged from 1.0 to 1.7. The predicted survival curves obtained via mMKM calculations matched the experimental survival curves. Mainly additive cytotoxic effects were observed for the cell lines AsPC-1, BxPC-3 and Panc-1. Conclusion: Our results demonstrate the cytotoxic efficacy of helium ion radiotherapy in pancreatic cancer in vitro as well as the capability of mMKM calculation and its value for biological plan optimization in helium ion therapy for pancreatic cancer. A combined treatment of helium irradiation and chemotherapy with gemcitabine leads to mainly additive cytotoxic effects in pancreatic cancer cell lines. The data generated in this study may serve as the radiobiological basis for future experimental and clinical works using helium ion radiotherapy in pancreatic cancer treatment
A MHz X-ray diffraction set-up for dynamic compression experiments in the diamond anvil cell
An experimental platform for dynamic diamond anvil cell (dDAC) research has been developed at the High Energy Density (HED) Instrument at the European X-ray Free Electron Laser (European XFEL). Advantage was taken of the high repetition rate of the European XFEL (up to 4.5â
MHz) to collect pulse-resolved MHz X-ray diffraction data from samples as they are dynamically compressed at intermediate strain rates (â€10 3 s â1 ), where up to 352 diffraction images can be collected from a single pulse train. The set-up employs piezo-driven dDACs capable of compressing samples in â„340â
”s, compatible with the maximum length of the pulse train (550â
”s). Results from rapid compression experiments on a wide range of sample systems with different X-ray scattering powers are presented. A maximum compression rate of 87â
TPaâ
s â1 was observed during the fast compression of Au, while a strain rate of âŒ1100â
s â1 was achieved during the rapid compression of N 2 at 23â
TPaâ
s â1