254 research outputs found

    Impact of slip cycles on the operation modes and efficiency of molecular motors

    Get PDF

    Molecular motors and stochastic networks

    Full text link

    Fluctuation theorem and large deviation function for a solvable model of a molecular motor

    Full text link
    We study a discrete stochastic model of a molecular motor. This discrete model can be viewed as a \emph{minimal} ratchet model. We extend our previous work on this model, by further investigating the constraints imposed by the Fluctuation Theorem on the operation of a molecular motor far from equilibrium. In this work, we show the connections between different formulations of the Fluctuation Theorem. One formulation concerns the generating function of the currents while another one concerns the corresponding large deviation function, which we have calculated exactly for this model. A third formulation of FT concerns the ratio of the probability of making one forward step to the probability of making one backward step. The predictions of this last formulation of the Fluctuation Theorem adapted to our model are in very good agreement with the data of Carter and Cross [Nature, {\bf 435}, 308 (2005)] on single molecule measurements with kinesin. Finally, we show that all the formulations of FT can be understood from the notion of entropy production.Comment: 15 pages, 9 figure

    CSF Protein Level of Neurotransmitter Secretion, Synaptic Plasticity, and Autophagy in PD and DLB

    Get PDF
    BACKGROUND: Molecular pathways associated with α-synuclein proteostasis have been detected in genetic studies and in cell models and include autophagy, ubiquitin-proteasome system, mitochondrial homeostasis, and synaptic plasticity. However, we lack biomarkers that are representative for these pathways in human biofluids. OBJECTIVE: The objective of this study was to evaluate CSF protein profiles of pathways related to α-synuclein proteostasis. METHODS: We assessed CSF protein profiles associated with neurotransmitter secretion, synapse plasticity, and autophagy in 2 monocentric cohorts with α-synucleinopathy (385 PD patients and 67 DLB patients). We included 80 PD patients and 17 DLB patients with variants in the glucocerebrosidase gene to serve as proxy for accelerated α-synuclein pathology with pronounced clinical trajectories. RESULTS: (1) Proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy were lower in PD and DLB patients compared with healthy controls. (2) These patterns were more pronounced in DLB than in PD patients, accentuated by GBA variant status in both entities. (3) CSF levels of these proteins were positively associated with CSF levels of total α-synuclein, with lower levels of proteostasis proteins related to lower levels of total α-synuclein. (4) These findings could be confirmed longitudinally. PD patients with low CSF profiles of proteostasis proteins showed lower CSF levels of α-synuclein longitudinally compared with PD patients with a normal proteostasis profile. CONCLUSION: CSF proteins associated with neurotransmitter secretion, synaptic plasticity, and endolysosomal autophagy might serve as biomarkers related to α-synuclein proteostasis in PD and DLB

    The predictive mirror: interactions of mirror and affordance processes during action observation

    Get PDF
    An important question for the study of social interactions is how the motor actions of others are represented. Research has demonstrated that simply watching someone perform an action activates a similar motor representation in oneself. Key issues include (1) the automaticity of such processes, and (2) the role object affordances play in establishing motor representations of others’ actions. Participants were asked to move a lever to the left or right to respond to the grip width of a hand moving across a workspace. Stimulus-response compatibility effects were modulated by two task-irrelevant aspects of the visual stimulus: the observed reach direction and the match between hand-grasp and the affordance evoked by an incidentally presented visual object. These findings demonstrate that the observation of another person’s actions automatically evokes sophisticated motor representations that reflect the relationship between actions and objects even when an action is not directed towards an object

    The Role of Attention in a Joint-Action Effect

    Get PDF
    The most common explanation for joint-action effects has been the action co-representation account in which observation of another's action is represented within one's own action system. However, recent evidence has shown that the most prominent of these joint-action effects (i.e., the Social Simon effect), can occur when no co-actor is present. In the current work we examined whether another joint-action phenomenon (a movement congruency effect) can be induced when a participant performs their part of the task with a different effector to that of their co-actor and when a co-actor's action is replaced by an attention-capturing luminance signal. Contrary to what is predicted by the action co-representation account, results show that the basic movement congruency effect occurred in both situations. These findings challenge the action co-representation account of this particular effect and suggest instead that it is driven by bottom-up mechanisms

    Rethinking ‘Rational Imitation’ in 14-Month-Old Infants: A Perceptual Distraction Approach

    Get PDF
    In their widely noticed study, Gergely, Bekkering, and Király (2002) showed that 14-month-old infants imitated an unusual action only if the model freely chose to perform this action and not if the choice of the action could be ascribed to external constraints. They attributed this kind of selective imitation to the infants' capacity of understanding the principle of rational action. In the current paper, we present evidence that a simpler approach of perceptual distraction may be more appropriate to explain their results. When we manipulated the saliency of context stimuli in the two original conditions, the results were exactly opposite to what rational imitation predicts. Based on these findings, we reject the claim that the notion of rational action plays a key role in selective imitation in 14-month-olds

    Understanding Actions of Others: The Electrodynamics of the Left and Right Hemispheres. A High-Density EEG Neuroimaging Study

    Get PDF
    Background: When we observe an individual performing a motor act (e.g. grasping a cup) we get two types of information on the basis of how the motor act is done and the context: what the agent is doing (i.e. grasping) and the intention underlying it (i.e. grasping for drinking). Here we examined the temporal dynamics of the brain activations that follow the observation of a motor act and underlie the observer’s capacity to understand what the agent is doing and why. Methodology/Principal Findings: Volunteers were presented with two-frame video-clips. The first frame (T0) showed an object with or without context; the second frame (T1) showed a hand interacting with the object. The volunteers were instructed to understand the intention of the observed actions while their brain activity was recorded with a high-density 128-channel EEG system. Visual event-related potentials (VEPs) were recorded time-locked with the frame showing the hand-object interaction (T1). The data were analyzed by using electrical neuroimaging, which combines a cluster analysis performed on the group-averaged VEPs with the localization of the cortical sources that give rise to different spatiotemporal states of the global electrical field. Electrical neuroimaging results revealed four major steps: 1) bilateral posterior cortical activations; 2) a strong activation of the left posterior temporal and inferior parietal cortices with almost a complete disappearance of activations in the right hemisphere; 3) a significant increase of the activations of the right temporo-parieta
    corecore