30 research outputs found
Watt-level millimeter-wave monolithic diode-grid frequency multipliers
Monolithic planar arrays containing in excess of 1000 Schottky diodes have produced watt level output at 66 GHz in a doubler configuration in excellent agreement with large signal predictions of the frequency multiplication. Current efforts are concentrated on fabricating and developing arrays of novel barrier-intrinsic-N+ (BIN) diode which promise increased performance in tripler and quintupler configurations
Hysteresis and Avalanches in the Random Anisotropy Ising Model
The behaviour of the Random Anisotropy Ising model at T=0 under local
relaxation dynamics is studied. The model includes a dominant ferromagnetic
interaction and assumes an infinite anisotropy at each site along local
anisotropy axes which are randomly aligned. Two different random distributions
of anisotropy axes have been studied. Both are characterized by a parameter
that allows control of the degree of disorder in the system. By using numerical
simulations we analyze the hysteresis loop properties and characterize the
statistical distribution of avalanches occuring during the metastable evolution
of the system driven by an external field. A disorder-induced critical point is
found in which the hysteresis loop changes from displaying a typical
ferromagnetic magnetization jump to a rather smooth loop exhibiting only tiny
avalanches. The critical point is characterized by a set of critical exponents,
which are consistent with the universal values proposed from the study of other
simpler models.Comment: 40 pages, 21 figures, Accepted for publication in Phys. Rev.
Dynamics of a ferromagnetic domain wall: avalanches, depinning transition and the Barkhausen effect
We study the dynamics of a ferromagnetic domain wall driven by an external
magnetic field through a disordered medium. The avalanche-like motion of the
domain walls between pinned configurations produces a noise known as the
Barkhausen effect. We discuss experimental results on soft ferromagnetic
materials, with reference to the domain structure and the sample geometry, and
report Barkhausen noise measurements on FeCoB amorphous
alloy. We construct an equation of motion for a flexible domain wall, which
displays a depinning transition as the field is increased. The long-range
dipolar interactions are shown to set the upper critical dimension to ,
which implies that mean-field exponents (with possible logarithmic correction)
are expected to describe the Barkhausen effect. We introduce a mean-field
infinite-range model and show that it is equivalent to a previously introduced
single-degree-of-freedom model, known to reproduce several experimental
results. We numerically simulate the equation in , confirming the
theoretical predictions. We compute the avalanche distributions as a function
of the field driving rate and the intensity of the demagnetizing field. The
scaling exponents change linearly with the driving rate, while the cutoff of
the distribution is determined by the demagnetizing field, in remarkable
agreement with experiments.Comment: 17 RevTeX pages, 19 embedded ps figures + 1 extra figure, submitted
to Phys. Rev.
Hysteresis, Avalanches, and Disorder Induced Critical Scaling: A Renormalization Group Approach
We study the zero temperature random field Ising model as a model for noise
and avalanches in hysteretic systems. Tuning the amount of disorder in the
system, we find an ordinary critical point with avalanches on all length
scales. Using a mapping to the pure Ising model, we Borel sum the
expansion to for the correlation length exponent. We sketch a
new method for directly calculating avalanche exponents, which we perform to
. Numerical exponents in 3, 4, and 5 dimensions are in good
agreement with the analytical predictions.Comment: 134 pages in REVTEX, plus 21 figures. The first two figures can be
obtained from the references quoted in their respective figure captions, the
remaining 19 figures are supplied separately in uuencoded forma
Disorder-Induced Critical Phenomena in Hysteresis: Numerical Scaling in Three and Higher Dimensions
We present numerical simulations of avalanches and critical phenomena
associated with hysteresis loops, modeled using the zero-temperature
random-field Ising model. We study the transition between smooth hysteresis
loops and loops with a sharp jump in the magnetization, as the disorder in our
model is decreased. In a large region near the critical point, we find scaling
and critical phenomena, which are well described by the results of an epsilon
expansion about six dimensions. We present the results of simulations in 3, 4,
and 5 dimensions, with systems with up to a billion spins (1000^3).Comment: Condensed and updated version of cond-mat/9609072,``Disorder-Induced
Critical Phenomena in Hysteresis: A Numerical Scaling Analysis'