7,878 research outputs found
ESFK 20-100 watt S-band amplifier
Electrostatically focused klystron development for use in interplanetary spaceborne communication system
ESFK 20-100 watt S-band amplifier Quarterly report
Electrostatically focused klystron tube modification
Observing Coherence Effects in an Overdamped Quantum System
It is usually considered that the spectrum of an optical cavity coupled to an
atomic medium does not exhibit a normal-mode splitting unless the system
satisfies the strong coupling condition, meaning the Rabi frequency of the
coherent coupling exceeds the decay rates of atom and cavity excitations. Here
we show that this need not be the case, but depends on the way in which the
coupled system is probed. Measurements of the reflection of a probe laser from
the input mirror of an overdamped cavity reveal an avoided crossing in the
spectrum which is not observed when driving the atoms directly and measuring
the Purcell-enhanced cavity emission. We understand these observations by
noting a formal correspondence with electromagnetically-induced transparency of
a three-level atom in free space, where our cavity acts as the absorbing medium
and the coupled atoms play the role of the control field
Model for Anisotropic Directed Percolation
We propose a simulation model to study the properties of directed percolation
in two-dimensional (2D) anisotropic random media. The degree of anisotropy in
the model is given by the ratio  between the axes of a semi-ellipse
enclosing the bonds that promote percolation in one direction. At percolation,
this simple model shows that the average number of bonds per site in 2D is an
invariant equal to 2.8 independently of . This result suggests that
Sinai's theorem proposed originally for isotropic percolation is also valid for
anisotropic directed percolation problems. The new invariant also yields a
constant fractal dimension  for all , which is the same
value found in isotropic directed percolation (i.e., ).Comment: RevTeX, 9 pages, 3 figures. To appear in Phys.Rev.
Spiral Density Waves in M81. I. Stellar Spiral Density Waves
Aside from the grand-design stellar spirals appearing in the disk of M81, a
pair of stellar spiral arms situated well inside the bright bulge of M81 has
been recently discovered by Kendall et al. (2008). The seemingly unrelated
pairs of spirals pose a challenge to the theory of spiral density waves. To
address this problem, we have constructed a three component model for M81,
including the contributions from a stellar disk, a bulge, and a dark matter
halo subject to observational constraints. Given this basic state for M81, a
modal approach is applied to search for the discrete unstable spiral modes that
may provide an understanding for the existence of both spiral arms. It is found
that the apparently separated inner and outer spirals can be interpreted as a
single trailing spiral mode. In particular, these spirals share the same
pattern speed 25.5 km s kpc with a corotation radius of 9.03 kpc.
In addition to the good agreement between the calculated and the observed
spiral pattern, the variation of the spiral amplitude can also be naturally
reproduced.Comment: 25 pages, 6 figures, accepted for publication in Ap
Short gamma-ray bursts within 200 Mpc
We present a systematic search for short-duration gamma-ray bursts (GRBs) in the local Universe based on 14 yr of observations with the Neil Gehrels Swift Observatory. We cross-correlate the GRB positions with the GLADE catalogue of nearby galaxies, and find no event at a distance ≲100 Mpc and four plausible candidates in the range 100 Mpc ≲ D ≲ 200 Mpc. Although affected by low statistics, this number is higher than the one expected for chance alignments to random galaxies, and possibly suggests a physical association between these bursts and nearby galaxies. By assuming a local origin, we use these events to constrain the range of properties for X-ray counterparts of neutron star mergers. Optical upper limits place tight constraints on the onset of a blue kilonova, and imply either low masses (≲10−3M⊙) of lanthanide-poor ejecta or unfavorable orientations (θ_(obs) ≳ 30 deg). Finally, we derive that the all-sky rate of detectable short GRBs within 200 Mpc is 1.3^(+1.7)_(−0.8) yr⁻¹ (68 per cent confidence interval), and discuss the implications for the GRB outflow structure. If these candidates are instead of cosmological origin, we set a upper limit of ≲2.0 yr⁻¹ (90 per cent confidence interval) to the rate of nearby events detectable with operating gamma-ray observatories, such as Swift and Fermi
LPS resistance of SPRET/Ei mice is mediated by Gilz, encoded by the Tsc22d3 gene on the X chromosome
Natural variation for LPS-induced lethal inflammation in mice is useful for identifying new genes that regulate sepsis, which could form the basis for novel therapies for systemic inflammation in humans. Here we report that LPS resistance of the inbred mouse strain SPRET/Ei, previously reported to depend on the glucocorticoid receptor (GR), maps to the distal region of the X-chromosome. The GR-inducible gene Tsc22d3, encoding the protein Gilz and located in the critical region on the X-chromosome, showed a higher expressed SPRET/Ei allele, regulated in cis. Higher Gilz levels were causally related to reduced inflammation, as shown with knockdown and overexpression studies in macrophages. Transient overexpression of Gilz by hydrodynamic plasmid injection confirmed that Gilz protects mice against endotoxemia Our data strongly suggest that Gilz is responsible for the LPS resistance of SPRET/Ei mice and that it could become a treatment option for sepsis
Hydrodynamical Simulations of the Barred Spiral Galaxy NGC 1097
NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the
elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1
nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes
connected to the ring extend almost continuously out to the bar. The other ends
of the dust lanes attach to two main spiral arms. To provide a physical
understanding of its structural and kinematical properties, two-dimensional
hydrodynamical simulations have been carried out. Numerical calculations reveal
that many features of the gas morphology and kinematics can be reproduced
provided that the gas flow is governed by a gravitational potential associated
with a slowly rotating strong bar. By including the self-gravity of the gas
disk in our calculation, we have found the starburst ring to be gravitationally
unstable which is consistent with the observation in \citet{hsieh11}. Our
simulations show that the gas inflow rate is 0.17 M_\sun yr into the
region within the starburst ring even after its formation, leading to the
coexistence of both a nuclear ring and a circumnuclear disk.Comment: 32 pages, 14 figures, 1 table, accepted for publication in the Ap
Thermal stability and nitrogen redistribution in the〈Si〉/Ti/W–N/Al metallization scheme
Backscattering spectrometry, Auger electron spectroscopy, and x‐ray diffraction have been used to monitor the thin‐film reactions and nitrogen redistribution in the 〈Si〉/Ti/W–N/Al metallization system. It is found that nitrogen in the W–N layer redistributes into Ti after annealing at temperatures above 500 °C. As a consequence of this redistribution of nitrogen, a significant amount of interdiffusion between Al and the underlayers is observed after annealing at 550 °C. This result contrasts markedly with that for the 〈Si〉/W–N/Al system, where no interdiffusion can be detected after the same thermal treatment. We attribute this redistribution of nitrogen to the stronger affinity of Ti for nitrogen than W. If the Ti layer is replaced by a sputtered TiSi_(2.3) film, no redistribution of nitrogen or reactions can be detected after annealing at 550 °C for 30 min
- …
