33 research outputs found

    Modeling the Swift BAT Trigger Algorithm with Machine Learning

    Get PDF
    To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is essential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive procedure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al. (2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector machines, and artificial neural networks. The best models have accuracies of approximately greater than 97% (approximately less than 3% error), which is a significant improvement on a cut in GRB flux which has an accuracy of 89:6% (10:4% error). These models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of eta(sub 0) approximately 0.48(+0.41/-0.23) Gpc(exp -3) yr(exp -1) with power-law indices of eta(sub 1) approximately 1.7(+0.6/-0.5) and eta(sub 2) approximately -5.9(+5.7/-0.1) for GRBs above and below a break point of z(sub 1) approximately 6.8(+2.8/-3.2). This methodology is able to improve upon earlier studies by more accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is analysis is publicly available online

    Energetic Particles of Cosmic Accelerators I: Galactic Accelerators

    Get PDF
    The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Our pursuit of more than a century to uncover the origins and fate of these cosmic energetic particles has given rise to some of the most interesting and challenging questions in astrophysics. Energetic particles in our own galaxy, galactic cosmic rays (GCRs), engage in a complex interplay with the interstellar medium and magnetic fields in the galaxy, giving rise to many of its key characteristics. For instance, GCRs act in concert with galactic magnetic fields to support its disk against its own weight. GCR ionization and heating are essential ingredients in promoting and regulating the formation of stars and protostellar disks. GCR ionization also drives astrochemistry, leading to the build up of complex molecules in the interstellar medium. GCR transport throughout the galaxy generates and maintains turbulence in the interstellar medium, alters its multi-phase structure, and amplifies magnetic fields. GCRs could even launch galactic winds that enrich the circumgalactic medium and alter the structure and evolution of galactic disks. As crucial as they are for many of the varied phenomena in our galaxy, there is still much we do not understand about GCRs. While they have been linked to supernova remnants (SNRs), it remains unclear whether these objects can fully account for their entire population, particularly at the lower (approximately less than 1 GeV per nucleon) and higher (~PeV) ends of the spectrum. In fact, it is entirely possible that the SNRs that have been found to accelerate CRs merely re-accelerate them, leaving the origins of the original GCRs a mystery. The conditions for particle acceleration that make SNRs compelling source candidates are also likely to be present in sources such as protostellar jets, superbubbles, and colliding wind binaries (CWBs), but we have yet to ascertain their roles in producing GCRs. For that matter, key details of diffusive shock acceleration (DSA) have yet to be revealed, and it remains to be seen whether DSA can adequately explain particle acceleration in the cosmos. This White Paper is the first of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. For the case of GCRs, MeV astronomy will: 1) Search for fresh acceleration of GCRs in SNRs; 2) Test the DSA process, particularly in SNRs and CWBs; 3) Search for signs of CR acceleration in protostellar jets and superbubbles

    Energetic Particles of Cosmic Accelerators II: Active Galactic Nuclei and Gamma-ray Bursts

    Get PDF
    The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Though they play a key role in cultivating the cosmological environment and/or enabling our studies of it, there is still much we do not know about AGNs and GRBs, particularly the avenue in which and through which they supply radiation and energetic particles, namely their jets. This White Paper is the second of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. The focus of this white paper is active galactic nuclei and gamma-ray bursts.Comment: 11 pages (including references), 2 figures; Submitted to the Astro2020 call for science white paper

    Diagnostic utility of snail in metaplastic breast carcinoma

    Get PDF
    Metaplastic breast carcinoma (MBC) is a rare subtype of breast cancer characterized by coexistence of carcinomatous and sarcomatous components. Snail is a nuclear transcription factor incriminated in the transition of epithelial to mesenchymal differentiation of breast cancer. Aberrant Snail expression results in lost expression of the cell adhesion molecule E-cadherin, an event associated with changes in epithelial architecture and invasive growth. We aimed to identify the utility of Snail, and of traditional immunohistochemical markers, in accurate MBC classification and to evaluate clinicopathologic characteristics and outcome

    Housing: An Under-Explored Influence on Children’s Well-Being and Becoming

    Get PDF
    Research on housing has tended to focus on adult outcomes, establishing relationships between housing and a number of aspects of health and well-being. Research exploring the influence of housing on children has been more limited, and has tended to focus on adult concerns around risk behaviours, behavioural problems and educational attainment. While these outcomes are important, they neglect the impact of housing on children’s lives beyond these concerns. There are a number of reasons to believe that housing would play an important role in children’s well-being more broadly. Family stress and strain models highlight how housing difficulties experienced by adults may have knock on effects for children, while Bronfenbrenner’s ecological approach to human development emphasises the importance of children’s experiences of their environments, of which the home is among the most important. This paper summaries the existing evidence around housing and child outcomes, predominantly educational and behavioural outcomes, and argues for the extension of this work to consider the impact of housing on children’s lives more broadly, especially their subjective well-being

    Core-collapse supernovae in the great survey era

    Get PDF
    A new class of wide-field, repeated-scan optical sky surveys, such as LSST, is coming online, and will map the sky in the time domain with unprecedented depth, completeness, and dynamic range. A main science goal of LSST is to detect Type Ia supernovae, but the survey will also revolutionize our understanding of core-collapse events. LSST will observe ~ 10^5 core-collapse supernovae per year out to z ~ 1 and obtain the cosmic supernova rate by direct counting, in an unbiased way and with high statistics. Many science applications will therefore be feasible. Here, we discuss synergies with neutrino detectors, radio observations, and gamma-ray telescopes. The cumulative (anti)neutrino production from all core-collapse supernovae within our cosmic horizon gives rise to a diffuse supernova neutrino background (DSNB) which is on the verge of detectability. The observed flux depends on supernova physics, but also on the cosmic history of supernova explosions. The high precision measurement of the cosmic supernova rate will allow precise predictions of DSNB and make it a strong probe of optically invisible supernovae, which may be unseen either due to unexpected large dust obscuration in host galaxies, or because some core-collapse events proceed directly to black hole formation and fail to give an optical outburst. Another way to uncover optically invisible supernovae would be the next generation radio telescope, the Square Kilometer Array (SKA). SKA will be capable of unbiased synoptic searches over large fields of view with remarkable sensitivity and explode the radio core-collapse supernova inventory from the current number of several dozen in the local universe to ~ 600 yr^???1 deg^???2 out to z ~ 5. SKA will be complementary to LSST and together provide crucial information for dust evolution and star-formation at high redshift. Furthermore, supernovae are an important astrophysical input of the diffuse extragalactic gamma-ray background (EGB), which arises from an ensemble of unresolved extragalactic gamma-ray sources. Although the EGB has been detected by the Fermi Gamma-Ray Space Telescope, its source spectrum remains unsettle. We will discuss the EGB contributions from cosmic rays accelerated by supernovae in both star-forming and quiescent galaxies. LSST will provide crucial information about supernovae and their host galaxies, and therefore enable more precise EGB predictions that will disentangle the EGB emissions from different source candidates
    corecore